Abstract
It is supposed that a region within an isotropic elastic solid undergoes a spontaneous change of form which, if the surrounding material were absent, would be some prescribed homogeneous deformation. Because of the presence of the surrounding material stresses will be present both inside and outside the region. The resulting elastic field may be found very simply with the help of a sequence of imaginary cutting, straining and welding operations. In particular, if the region is an ellipsoid the strain inside it is uniform and may be expressed in terms of tabulated elliptic integrals. In this case a further problem may be solved. An ellipsoidal region in an infinite medium has elastic constants different from those of the rest of the material; how does the presence of this inhomogeneity disturb an applied stress-field uniform at large distances? It is shown that to answer several questions of physical or engineering interest it is necessary to know only the relatively simple elastic field inside the ellipsoid.
Footnotes
This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.
- Received March 1, 1957.
- Scanned images copyright © 2017, Royal Society
Royal Society Login
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.
















Learn about displayed equations in Proceedings A