Abstract
von Stackelberg & Muller (1951) and Muller & von Stackelberg (1952) have shown that two structural types of water lattice exist in which various species are intercalated to give solid hydrates. In the present paper a statistical thermodynamic interpretation is given of the properties of these clathrate phases of water. This method is a development of a procedure applied by van der Waals (1956) to clathrate compounds of quinol, and shows that these hydrates should be non-stoicheiometric. It is possible to give a satisfactory explanation of the stabilizing action of ‘hilfsgase’ (von Stackelberg & Meinhold 1954); to interpret various thermochemical quantities and indicate limitations in some of these quantities as previously determined; and to clarify the conditions under which the clathrate phases form. Calculations of heats of intercalation for several inert gases give values close to those derived from thermochemical data. Calculations of equilibrium constants for intercalation of these inert gases lead to reasonable estimates of dissociation pressures of the corresponding clathrates. On the basis of the dissociation pressures the fractionation of mixtures to be expected by formation of clathrate phases may be estimated.
Footnotes
This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.
- Received May 31, 1957.
- Scanned images copyright © 2017, Royal Society
Royal Society Login
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.
















Learn about displayed equations in Proceedings A