Skip to main content
  • Other Publications
    • Philosophical Transactions B
    • Proceedings B
    • Biology Letters
    • Open Biology
    • Philosophical Transactions A
    • Proceedings A
    • Royal Society Open Science
    • Interface
    • Interface Focus
    • Notes and Records
    • Biographical Memoirs

Advanced

  • Home
  • Content
    • Latest issue
    • All content
    • Subject collections
    • Special features
    • Videos
  • Information for
    • Authors
    • Reviewers
    • Readers
    • Institutions
  • About us
    • About the journal
    • Editorial board
    • Author benefits
    • Policies
    • Citation metrics
    • Publication times
    • Open access
  • Sign up
    • Subscribe
    • eTOC alerts
    • Keyword alerts
    • RSS feeds
    • Newsletters
    • Request a free trial
  • Submit
You have accessRestricted access

Physical consequences of a general excess of charge

R. A. Lyttleton, F. R. S., H. Bondi, F. R. S.
Published 29 September 1959.DOI: 10.1098/rspa.1959.0155
Raymond Arthur Lyttleton
St John's College, Cambridge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Bondi
King's College, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • Review History
  • PDF
Loading

Abstract

The possibility of a general excess of charge in the universe is proposed. If such exists, even to the extent of only 2 parts in 1018, sufficiently powerful electric forces result to produce the observed expansion of the universe on the basis of Newtonian mechanics. If the excess occurs as a slight difference in magnitude of the proton and electron charges, the hypothesis may be on the verge of what could be established by experiment. If creation of matter, and also necessarily charge, is assumed, the Maxwell equations must be modified to avoid strict conservation. The appropriate modification is shown to involve additional terms in the current and charge-density equations proportional to the vector and scalar potentials. When applied to a spherically symmetrical smoothed-out universe, the revised equations establish almost rigorously that electrical requirements imply a strict velocitydistance law for the mass motion of expansion. For agreement with observation, the requisite charge on the proton would be (1 + y) e where y = 2 x 10-18, or, if the charges are strictly equal in magnitude, it requires 1 + y protons for every electron, with the same value of y. The value of the Hubble constant and of the smoothed-out density of matter in the universe are shown to be simply related by the theory to the rate of creation. The same solution is shown to hold equally in de Sitter space-time, and the principle of complete equivalence of all observers at all times is thereby demonstrated to be a property of the solution. Construction of the corresponding stress-energy tensor enables the factor associated with the new terms in the Maxwell equations to be directly related to the observable radius of the universe. On the first form of the charge-excess hypothesis, galaxies and clusters of galaxies (with their haloes) arise as ionized condensation units within the general background distribution. Since the units are conducting, they remain electrically neutral, and therefore grow and are controlled by ordinary gravitational forces. Moreover, because they are conducting, the units will expel their excess charge in the form of free protons. It is shown that the electrostatic potential at the surface of a unit is maintained by creation at such a value that the protons are expelled with energies corresponding to the highest energy cosmic rays. These units will take part in the general expansion, not under the direct action of the electric repulsion, but because they form and grow from the expanding background material. Any small departure in velocity of a unit from the local value would be quickly removed through the gravitational braking action associated with accretion of further material. The gravitational potential at the surface of a unit is such that infalling hydrogen atoms will have energy of motion corresponding to temperature of the order of a million degrees, and the outer parts of the units at least will be at high temperature.

Footnotes

  • This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.

  • Received March 3, 1959.
  • Scanned images copyright © 2017, Royal Society

Royal Society Login

Sign in for Fellows of the Royal Society

Fellows: please access the online journals via the Fellows’ Room

Not a subscriber? Request a free trial

Log in using your username and password

Enter your Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences username.
Enter the password that accompanies your username.
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.

Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.

PreviousNext
Back to top
PreviousNext
29 September 1959
Volume 252, issue 1270
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Share
Physical consequences of a general excess of charge
R. A. Lyttleton, F. R. S., H. Bondi, F. R. S.
Proc. R. Soc. Lond. A 1959 252 313-333; DOI: 10.1098/rspa.1959.0155. Published 29 September 1959
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Email

Thank you for your interest in spreading the word on Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Physical consequences of a general excess of charge
(Your Name) has sent you a message from Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(Your Name) thought you would like to see the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences web site.
Print
Manage alerts

Please log in to add an alert for this article.

Sign In to Email Alerts with your Email Address
Citation tools

Physical consequences of a general excess of charge

R. A. Lyttleton, F. R. S., H. Bondi, F. R. S.
Proc. R. Soc. Lond. A 1959 252 313-333; DOI: 10.1098/rspa.1959.0155. Published 29 September 1959

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Article reuse

  • Article
  • Info & Metrics
  • eLetters
  • Review History
  • PDF

Related articles

Cited by

Powered by MathJaxLearn about displayed equations in Proceedings A

PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

  • PROCEEDINGS A
    • About this journal
    • Contact information
    • Purchasing information
    • Submit
    • Author benefits
    • Open access membership
    • Recommend to your library
    • FAQ
    • Help

Royal society publishing

  • ROYAL SOCIETY PUBLISHING
    • Our journals
    • Open access
    • Publishing policies
    • Conferences
    • Podcasts
    • News
    • Blog
    • Manage your account
    • Terms & conditions
    • Cookies

The royal society

  • THE ROYAL SOCIETY
    • About us
    • Contact us
    • Fellows
    • Events
    • Grants, schemes & awards
    • Topics & policy
    • Collections
    • Venue hire
1471-2946

Copyright © 2018 The Royal Society