Abstract
An analysis of radiative scattering for an arbitrary configuration of neighbouring spheres is presented. The analysis builds upon the previously developed superposition solution, in which the scattered field is expressed as a superposition of vector spherical harmonic expansions written about each sphere in the ensemble. The addition theorems for vector spherical harmonics, which transform harmonics from one coordinate system into another, are rederived, and simple recurrence relations for the addition coefficients are developed. The relations allow for a very efficient implementation of the ‘order of scattering’ solution technique for determining the scattered field coefficients for each sphere.
Footnotes
This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.
- Received November 12, 1990.
- Accepted December 12, 1990.
- Scanned images copyright © 2017, Royal Society
Royal Society Login
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.