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Table I .— Outer Boundary.

K. From (44)
— t?M / 7T.

From (48) 
— -stm/ tt.

From (41) 
0*^/0 ttM.

From (45) and (48)
0^/0W M.

0 12-30 12 -30 5 -06 5 -07
5 8-39 8-39 — 4-80

10 4-49 4-53 5 -12 5 -1216 2-62 2-65 _ 5-60
20 1 -75 1 -68 6 -05 6-04
30 0-83 0-82 6-73 6-73
40 — _ 7 -27 _
50 0 33 0-33 7-70 —

The next step is the calculation of -v/rM and d^Jr/dnM from (45) and (48) when 
the point M lies on the inner circular boundary. Points being defined as 
before by the angle 6, measured at the centre of the circle, the result of 
the calculation is given in Table II. Since it  is of interest to examine the 
elfect of molecular rotation, the elements of and d-^r/dn^ which depend
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on x  and those which are independent of it  are separately tabulated as well 
as the sum.
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Table I I .— Inner Boundary (due to Sources on Outer Boundary).

0°.
From (48)
- W m / tt.

From (45) 
2\[/ —  Wm / tt-

^M.
From (48)

— 1/tt 05J/0^m.
From (45) 

0/0%m (2*4 — w/fl*). d ^ l d n  m .

0 0 0 0 0 0 0
10 0*73 1 *57 0*42 0*693 1 *576 0 *441
20 1 *40 3*09 0*85 1 *358 3*104 0*873
30 2*05 4*52 1 *25 1 *994 4*500 1*253
40 2*67 5*81 1*57 2*570 5*790 1*610
50 3*17 6 *92 1*79 3 *048 6*832 1*892
60 3*59 7*82 2*11 3 *460 7*780 2*160
70 3 *90 8*48 2 *29 3*784 8*489 2*352
80 4*09 8 * 8 8 2*40 3 *982 8 *830 2*424
90 4*16 9*02 2*43 4*035 9 *007 2 *486

W ithin the limits of accuracy of working, the above figures are repre-
sented by

=  2 '44sin $ +  0*01 sin

and =  2*48 sin $ +  0*02 sin 39
onM

i.e., the values are very nearly proportional to sin with the constants of 
proportionality almost the same.

Very little further work completes the calculation to the full degree of 
accuracy hitherto attempted. Two values of have been found which 
satisfy the differential equation y 4i|r =  0, but with different, though related, 
boundary conditions. As in (38) and (40), define one of these by y\r, and as in 
(44) and (45), define the second by \frM. The first represents the solution 
which satisfies the inner boundary conditions and ignores the outer boundary, 
whilst the second has the same values as the first at the outer boundary, but 
has not involved direct consideration of the inner boundary.

On the channel walls therefore

d\fr _  d\Jr
f'M = (51)

On the inner boundary, close approximations are
yjr =  0990 sin 0 +  0*003 sin *'

=  2*440 sin 0 +  0*010 sin ->

^ =  0*970 sin 9 +  0*010 sin 39Cn

4 ^ - =  2*480 sin 9 +  0*020 sin 39onM J

(52)

(53)

i
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The function 7 can> by choice of 7, be made to satisfy the
boundary conditions on the cylinder approxim ately, whilst those on the 
channel walls are completely satisfied. I t  is, however, easy to carry the 
accuracy further by the use of spherical harmonic functions which vanish a t 
infinity and are of the order of accuracy of working on the outer boundary. 
I t  is assumed, therefore, that

^  3 =  7 ( ^ j
. >, , sin 0 asin 3 (54)

is to be made to approximate to the boundary values as closely as possible by 
choice of 7, a, and /3. The algebraic work is simple and

sin 6=  0*662 ( ^ M- ^ )  + 0030
/

gives boundary values on the cylinder of

yjr3 =  0-990 sin +  0-004 sin 3 

cty 3
dn

o-ooi sin 30 
73 ’

and 0-970 sin + 0-010 sin 3(9

(55)

(56)

and, by comparison with those postulated for yfr (see (52) and (53)), the 
accuracy is seen to be complete to the order attem pted in the previous Tables. 
On the outer boundary the effect of the added spherical harmonic term s is 
small and does not exceed 0'006 in the value of 3 a t any point.

To complete the solution, it is necessary to add th a t corresponding with 
steady streaming of the fluid through the unobstructed channel, as given by 
(36), i.e., the final stream function is

0'662 -i~ \JrM —1*96?- sin 0log r— 0*990 - -1—  — s— 1 ■ 
l r  10Or \ ■£)}

+  0-030 0-001 ! ^ | f f - r s i n  ( - I  (57)

and -v|rM is defined by equations (45) and (48).
from  (57) were calculated values of the stream function, from which fig. 6 

was prepared.
I he value of the stream function given by (57) applies to the case of the 

flow of fluid through a channel past a circular cylinder. There is a slightly 
different flow when the cylinder is moved at uniform velocity through 
stationary fluid, and it is perhaps worth while to deduce an approximate 
expression for yjr in the latter case. Strictly calculated, the new problem 
calls for a solution of the differential equation (37) with boundary values

yjr =  sin 0

=  sin 0on
(38 a) .
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instead of (38). I t  is, however, evident tha t the differences between the two 
sets of conditions are very small, being less than 2 per cent, for and 4 per

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / .
- 3-3
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F ig. 6.—Stream lines (x/s).

cent, for d\Jrjdn.It  might then be expected tha t many of the succeeding
expressions would differ by similar small amounts. This is seen to be true 
for the equivalent of equation (40), which is

yjr — 2r sin 0 log r + —D (40a)

On the cylinder walls r is unity, whilst the least value on the channel walls 
is 5. The same reasoning leads to the hypothesis tha t is sensibly the 
same as tha t given by (50), and in producing equation (58) the small terms 
in sin 3 0 in equation (50) were ignored. Following the method indicated in 
equations (54) to (57) a new value for the stream function is obtained as

=  0-676 j V M-  1’̂ 6r sin 0log -0 -990  j -  +  ° 'Q2C| Sin (58)

and the value of all the numerical approximations may be tested a posteriori. 
On the cylinder the values of and dyjr/d?i}i are given by (50), and putting 
r  =  1 in (58) leads to

=  sin 6 -f 0-007 sin 30 (59)
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which is very close to the required value. Similar calculations show th a t 
the remaining boundary conditions, both on the cylinder and channel walls, 
are equally closely approached.

Since the relative motion of the fluid and cylinder when the la tte r moves 
is very little different from that when the fluid moves, it follows th a t the 
calculated resistance will be given approxim ately by the same expression (68).

Calculation of £ and the Resistance o f the Cylinder.

The value of £ may be obtained from (57) by differentiation, but it is 
simpler in the present instance to determ ine directly from the value of %. 
Before integration the expression for is

=  0-662

sin 7,

•3 9 2 ^ ^ - 0 - 0 8 ^ ^  j>+008rsin<9. (59a,)

The value of j d ^  was found analytically and the necessary calcula­

tions were made for the drawing of fig. 7.

Fig. 7.—Lines of constant molecular rotation (Q.

Un the inner boundary it was found that a close approximation to f  is 
given by

ĉylinder — — 2-32 sin 0 — 0 '053 sin (60)
and this value was used in estimating the resistance of the cylinder.
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The formulas for the pressures were taken from Lamb’s ‘ Hydrodynamics, 
p. 570, and with the fluid incompressible are

c)v
Pyy ~—P +  2 / / .^  ^ (61)

P „ x - P „ -  ^ [ dx+ d>J) J

where p is to be obtained from the relations

dp0£  0£
dx ̂  dy ^

I t  is not difficult to show that

(62)

l =  0-662 { j ^ H r f Xa- 3 - 9 2 ^ - 0 - 0 8 2 ^ j . + 0-08rco8», (63)
*

and the evaluation on the inner boundary admits of the expression

p  — p(2'32 cos 6 +  0-053 cos (64)

being used as of sufficient accuracy.
Since £ =  02i jrjdr2on the cylinder and the velocities along and normal to 

the surface are zero, it is easy to find the differential coefficients du/dx, etc., 
and hence pxx and pxy.

The resistance of the cylinder per unit length is then
r2it r2n

R =  — pxx cos 6 dd p ^  sin 6 (65)
Jo Jo

I t  appears tha t the integrals contribute equal amounts to the resistance, 
which is, in numerical form

R =  2,267T/a. (66)

I t  should here be noted that the cylinder is of unit radius and that the free 
stream velocity in the middle of the channel is unity. The formula for 
resistance is easily generalised, for on the principles of dynamical similarity

w*  =/(v) (67)
where U is the stream velocity, d the diameter of the cylinder and v the 
kinematic viscosity ( pv = p) and p the density of the fluid. Since R is
proportional to p  it follows th a t/(U c£ /r)  must take the form Ai//U  where A 
is a constant to be determined from (66). I t  is then found that

R<7
pV2d* ( 68>

)
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The lim itations imposed on the application of the formula are discussed by 
Lamb and it appears that JJd/v should not greatly exceed 0-2 if (68) is to 
apply. The resistance coefficient 'Rd/pV2d2 is 35‘5 when U —  0‘2.

Observations in a wind channel have not been made a t values less than 
XJd/v — io , and the corresponding resistance coefficient is then 1*5, but is 
varying rapidly in the direction leading to high values a t low values of Vdjv.  
I t  may be noted as of interest that the formula given above (68) would give 
a coefficient of 0-71 a t IW /r  =  10, i.e.,about half the observed value. The 
departure from fact is then less than m ight have been anticipated  on m athe­
matical grounds.

The resistance of a cylinder in a viscous fluid of infinite extent has been 
worked out by Oseen,* using a different equation of motion, but subject to the 
same physical and m athem atical lim itations as in the present problem. The 
resistance as given by Lamb is

K,<7 _ .
p U W  ~1 -3 0 9 -lo g  lU \ v

and when U d/v =  0'2 the value of Vd/p~U2 is 2L6. 
the formula for higher values of U djvon account of the analytical form, since 
the assumption that U djv is small has been used both in forming the equations 
of motion and also in solving them. I t  appears to be probable th a t the la tte r 
limitation can be removed by methods similar to those of the present paper. 
For* the moment it may be noted that the presence of a channel only five 
times the diameter of the cylinder in width has not raised the resistance to 
double that in a free stream.

The Two-dimensional Slow Motion of Viscous Fluids. 413

(69)

I t  is not possible to. use

* Lamb, ‘ Hydrodynamics,’ pp. 605-607.
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