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if one makes the substitution (W' —W°)tjh =  x .For large values of t this 
reduces to

2 1 a0 12 t/h. 1 v (W°, y ' ; W°, y°) |2 J  (W°, y ') j  (1-cos x)/x2 .

=  2tc | a012 tjh .\ (W°, y ' ; W°, y°)|2 J(W°, y').
The probability per unit time of a transition to a state for which each yfc lies 
between yfc' and yfc' +  dyk' is thus (apart from the normalising factor)

2* I a° |*/& . | « (W° y' ; W°, T°) |2 j  (W°, y') i Tl' . dy,' ... (24)
which is proportional to the square of the matrix element associated with that 
transition of the perturbing energy.

To apply this result to a simple collision problem, we take the a’s to be the 
components of momentum px, pv, pz of the colliding electron and the y’s to 
be 0 and </>, the angles which determine its direction of motion. If, taking the 
relativity change of mass with velocity into account, we let P denote the 
resultant momentum, equal to (px2 -f- p 2 +  pz2)-, and E the energy, equal to 
(m2c4+ P 2c2)-, of the electron, m being its rest-mass, we find for the Jacobian

j  =  S (y ,,ft,y ,>  =  E P  in 0 
3 (E, 0, <j)) c"

Thus the J  (W°, y') of the expression (24) has the value
J(W °,y') =  E 'F s in  O'/c2, (25)

where E' and P' refer to that value for the energy of the scattered electron which 
makes the total energy equal the initial energy W° (i.e., to that value required 
by the conservation of energy).

We must now interpret the initial value of a (a'), namely, 0 S (a' — a°), 
which we did not normalise. According to § 2 the wave function in terms of the 
variables <xk is b (a ')=  a (a') e~iy/ tlh, so that its initial value is

u° 8 (a' -  a0) e-iwt/h =  ao ^  ^  § {py> _  ̂  § ^

If we use the transformation function*
(x'lp') =  (2tt

and the transformation rule

Emission and Absorption of Radiation. 251>

we obtain for the initial wave function in the co-ordinates x, y, z the value
a 0 ( 2tt h ) ~ 3̂ z e itx.jxPe - '

* The symbol x is used for brevity to denote x, y, z.
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This corresponds to an initial distribution of | | 2 (2tcA)-3 electrons per unit
volume. Since their velocity is P°c2/E°, the number per unit time striking a 
unit surface at right-angles to their direction of motion is | |2P°c2/(27r&)3E°.
Dividing this into the expression (24) we obtain, with the help of (25),

4^(271h f ^ \ v ( p ' - ,  / )  | 2 | l s i n 8  ' dB' df i .  (26)

This is the effective area that must be hit by an electron in order that it shall 
be scattered in the solid angle sin O' dG' d<j>' with the energy E'. This result 
differs by the factor (2tcA)2/2wE ' . P'/P° from Born’s.* The necessity for the 
factor P '/P0 in (26) could have been predicted from the principle of detailed 
balancing, as the factor \v (p ' ; p°) | 2 is symmetrical between the direct and 
reverse processes.^

§ 6. Application to Light-Quanta.
We shall now apply the theory of §4 to the case when the systems of the 

assembly are light-quanta, the theory being applicable to this case since light- 
quanta obey the Einstein-Bose statistics and have no mutual interaction. A 
light-quantum is in a stationary state when it is moving with constant momen
tum in a straight line. Thus a stationary state r is fixed by the three com
ponents of momentum of the light-quantum and a variable that specifies its 
state of polarisation. We shall work on the assumption that there are a finite 
number of these stationary states, lying very close to one another, as it would 
be inconvenient to use continuous ranges. The interaction of the light-quanta 
with an atomic system will be described by a Hamiltonian of the form (20), 
in which HP (J) is the Hamiltonian for the atomic system alone, and the 
coefficients vn are for the present unknown. We shall show that this form 
for the Hamiltonian, with the vrs arbitrary, leads to Einstein’s laws for the 
emission and absorption of radiation.

The light-quantum has the peculiarity that it apparently ceases to exist 
when it is in one of its stationary states, namely, the zero state, in which its 
momentum, and therefore also its energy, are zero. When a light-quantum 
is absorbed it can be considered to jump into this zero state, and when one is 
emitted it can be considered to jump from the zero state to one in which it is

* In a more recent paper (‘ Nachr. Gesell. d. Wiss.,’ Gottingen, p. 146 (1926)) Born has 
obtained a result in agreement with that of the present paper for non-relativity mechanics, 
by using an interpretation of the analysis based on the conservation theorems. I am 
indebted to Prof. N. Bohr for seeing an advance copy of this work.

t  See Klein and Rosseland, ‘ Z. f. Physik,’ vol. 4, p. 46, equation (4) (1921).
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physically in evidence, so that it appears to have been created. Since there is 
no limit to the number of light-quanta that may be created in this way, we must 
suppose that there are an infinite number of light-quanta in the zero state, so 
that the N0 of the Hamiltonian (20) is infinite. We must now have 60, the 
variable canonically conjugate to N0, a constant, since

60 =  0F/0NO =  W0 +  terms involving N0- i  or (N0 + 1)- *

and W0 is zero. In order that the Hamiltonian (20) may remain finite it is 
necessary for the coefficients vr(h v0r to be infinitely small. We shall suppose 
that they are infinitely small in such a way as to make -yr0N0̂  and %.N0* 
finite, in order that the transition probability coefficients may be finite. Thus 
we put

vr0 (N0 +  1)" e~ie°lh — i’orN0-e,e°/A =  v *,

where vr and v*  are finite and conjugate imaginaries. We may consider the 
vr and v*  to be functions only of the J ’s and w’s of the atomic system, since 
their factors (N0 -j- 1)" e~ie°h and 'N0iel9o,h are practically constants, the rate 
of change of N0 being very small compared with N0. The Hamiltonian (20) 
now becomes

F =  HP(J) +  SrWrNr +  S ^ 0[vfN +  v*  (Nr +  1 ) ^ - ^ ]

+  £ f* 0Ss#ow W (N , +  1 -  (27)
The probability of a transition in which a light-quantum in the state r is 

absorbed is proportional to the square of the modulus of that matrix element of 
the Hamiltonian which refers to this transition. This matrix element must 
come from the term in the Hamiltonian, and must therefore be
proportional to N/* where N./ is the number of light-quanta in state r before 
the process. The probability of the absorption process is thus proportional 
to N/. In the same way the probability of a light-quantum in state r being 
emitted is proportional to (N/ +  1), and the probability of a light-quantum in 
state r being scattered into state s is proportional to N / (N/ -j-1). Radiative 
processes of the more general type considered by Einstein and Ehrenfest,f in 
which more than one light-quantum take part simultaneously, are not allowed 
on the present theory.

To establish a connection between the number of light-quanta per stationary 
state and the intensity of the radiation, we consider an enclosure of finite 
volume, A say, containing the radiation. The number of stationary states 
for light-quanta of a given type of polarisation whose frequency lies in the 

t  ‘ Z. f. Physik,’ vol. 19, p. 301 (1923).
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range v, to vr +  dvr and whose direction of motion lies in the solid angle 
about the direction of motion for state r will now be Avfdv/hofC . The energy 
of the light-quanta in these stationary states is thus N / . 2izhvr . Av^dv^ov/c3 
This must equal Ac-1I}.dvrdoy, where Ir is the intensity per unit frequency 
range of the radiation about the state r Hence

I,. =  N / ( 2 ; ( 2 8 )

so that N / is proportional to Ir and (N / +  1) is proportional to +  {2nh)vrzjc2. 
We thus obtain that the probability of an absorption process is proportional to 
I r, the incident intensity per unit frequency range, and that of an emission 
process is proportional to Ir +  (27i/i)vr3/c2, which are just Einstein’s laws.* 
In the same way the probability of a process in which a light-quantum is scattered 
from a state r to a state s is proportional to Ir [I, -)- which is Pauli’s
law for the scattering of radiation by an electron.!

§7. The Probability Coefficients for Emission and Absorption.

We shall now consider the interaction of an atom and radiation from the wave 
point of view. We resolve the radiation into its Fourier components, and 
suppose that their number is very large but finite. Let each component be 
labelled by a suffix r, and suppose there are ar components associated with the 
Tadiation of a definite type of polarisation per unit solid angle per unit fre
quency range about the component r. Each component can be described by 
a vector potential tcT chosen so as to make the scalar potential zero. The 
perturbation term to be added to the Hamiltonian will now be, according to 
the classical theory with neglect of relativity mechanics, c-1 Sr kt Xf, where Xr 
is the component of the total polarisation of the atom in the direction of y, 
which is the direction of the electric vector of the component r.

We can, as explained in § 1, suppose the field to be described by the canonical 
variables Nr, 0„ of which Nr is the number of quanta of energy of the com
ponent r, and 0r is its canonically conjugate phase, equal to 2ru times the 
0,- of §1. We shall now have Kr — ar cos brjh, where ar is the amplitude of 
kt- which can be connected with Nr as follows:—The flow of energy per unit 
area per unit time for the component r is af2v,.2. Hence the intensity

* The ratio of stimulated to spontaneous emission in the present theory is just twice its 
value in Einstein’s. This is because in the present theory either polarised component of 
the incident radiation can stimulate only radiation polarised in the same way, while in 
Einstein s the two polarised components are treated together. This remark applies also 
to the scattering process.

t  Pauli, ‘ Z. f. Physik,’ vol. 18, p. 272 (1923).
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per unit frequency range of the radiation in the neighbourhood of the com
ponent r is Ir == |-rcc_1 ar2vr2crr. Comparing this with equation (28), we obtain 
ar — 2 (hvr/c<7,.)'-N,,-, and hence

K,r — 2 (h v jca f  Nr- cos br/h.
The Hamiltonian for the whole system of atom plus radiation would now be, 

according to the classical theory,
F =  HP (J) +  Xr (2 Tzhvr)N}. -j- 2c—1 Xr ( XrN.r- cos dr/h, (29)

where HP (J) is the Hamiltonian for the atom alone. On the quantum theory 
we must make the variables N?. and 0r canonical q-numbers like the variables 
Jk, ivk that describe the atom. We must now replace the Nr- cos ftr/h in (29)
by the real q-number

i- {Nr* eidrlh +  e~i0r‘h N/} =  \(N / ei6r‘h +  (Nr +  1)*
so that the Hamiltonian (29) becomes

F =  HP (J) +  X, (2 nhvr)Nr+ In c“ *Xr ( X r (N / ei9r‘h +  (Nr +  1)*
(30)

This is of the form (27), with
vr — vr* =  In (vr/ X,. (31) 

and vrs =  0 (r, s ^  0).
The wave point of view is thus consistent with the light-quantum point of view 
and gives values for the unknown interaction coefficient vrs in the light- 
quantum theory. These values are not such as would enable one to express 
the interaction energy as an algebraic function of canonical variables. Since 
the wave theory gives vrs =  0 for r, s ^  0, it would seem to show that there are 
no direct scattering processes, but this may be due to an incompleteness in 
the present wave theory.

We shall now show that the Hamiltonian (30) leads to the correct expressions 
for Einstein’s A’s and B’s. We must first modify slightly the analysis of § 5 
so as to apply to the case when the system has a large number of discrete station
ary states instead of a continuous range. Instead of equation (21) we shall 
now have

ih a,(a') =  Xa" V (a'a") a (a").
If the system is initially in the state a0, we must take the initial value of a (a') 
to be 8a'ao, which is now correctly normalised. This gives for a first approxi
mation

ih a (a') =  V (a'a0) =  v(a'a°) <«'>-* <•>»)]«*
which leads to

gt[W (a')— W(a0)] t/h _  j

%h a(a ) =  Su'a°+  a0) i[W (a ')-W  (a°)]/h ’
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corresponding to (22). If, as before, we transform to the variables W, yx> 
y2 ... yw_i, we obtain (when y' 3*= y°)

« (WY) =  v (W', y ' ; W°, y°) [

The probability of the system being in a state for which each yfc equals yfc' 
is S W' | « (W' y')j2. If the stationary states lie close together and if the time t

is not too great, we can replace this sum by the integral (AW)-11 | a (W'y') |2

where AW is the separation between the energy levels. Evaluating this integral 
as before, we obtain for the probability per unit time of a transition to a state 
for which each y k =  yfc'

2tt/AAW . | v (W°, y ' ; W°, y°) |2. (32)

In applying this result we can take the y’s to be any set of variables that are 
independent of the total proper energy W and that together with W 'define 
a stationary state.

We now return to the problem defined by the Hamiltonian (30) and consider 
an absorption process in which the atom jumps from the state J° to the state 
J ' with the absorption of a light-quantum from state r. We take the variables 
y' to be the variables J ' of the atom together with variables that define the 
direction of motion and state of polarisation of the absorbed quantum, but 
not its energy. The matrix element v (W°, y ' ; W°, y°) is now

W  2c~3/2 (vr/of)1/2 X, (J°J')Nr°,

where Xr (J°J') is the ordinary (J°J') matrix element of X,.. Hence from (32) the 
probability per unit time of the absorption process is

2tc Avr 
A AW ‘

Xr (J ° J ') |2N,0.

To obtain the probability for the process when the light-quantum comes from 
any direction in a solid angle dco, we must multiply this expression by the number 
of possible directions for the light-quantum in the solid angle dco, which is 
doi GrAW/2tcA. This gives

<*<■>$ IX, <J»J') 12 N,° =  do) I X, (J»J') | 21,

with the help of (28). Hence the probability coefficient for the absorption 
process is 1/27rA2cvr2. |X r (J°J ')|2, in agreement with the usual value for Ein
stein’s absorption coefficient in the matrix mechanics. The agreement for 
the emission coefficients may be verified in the same manner.
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The present theory, since it gives a proper account of spontaneous emission, 
must presumably give the effect of radiation reaction on the emitting system, 
and enable one to calculate the natural breadths of spectral lines, if one can 
overcome the mathematical difficulties involved in the general solution of the 
wave problem corresponding to the Hamiltonian (30). Also the theory enables 
one to understand how it comes about that there is no violation of the law of the 
conservation of energy when, say, a photo-electron is emitted from an atom 
under the action of extremely weak incident radiation. The energy of inter
action of the atom and the radiation is a q-number that does not commute with 
the first integrals of the motion of the atom alone or with the intensity of the 
radiation. Thus one cannot specify this energy by a c-number at the same 
time that one specifies the stationary state of the atom and the intensity of the 
radiation by c-numbers. In particular, one cannot say that the interaction 
energy tends to zero as the intensity of the incident radiation tends to zero. 
There is thus always an unspecifiable amount of interaction energy which 
can supply the energy for the photo-electron.

I would like to express my thanks to Prof. Niels Bohr for his interest in this 
work^and for much friendly discussion about it.

Summary.
The problem is treated of an assembly of similar systems satisfying the 

Einstein-Bose statistical mechanics, which interact with another different 
system, a Hamiltonian function being obtained to describe the motion. The 
theory is applied to the interaction of an assembly of light-quanta with an 
ordinary atom, and it is shown that it gives Einstein’s laws for the emission 
and absorption of radiation.

The interaction of an atom with electromagnetic waves is then considered, 
and it is shown that if one takes the energies and phases of the waves to be 
q-numbers satisfying the proper quantum conditions instead of c-numbers, 
the Hamiltonian function takes the same form as in the light-quantum treat
ment. The theory leads to the correct expressions for Einstein’s A’s and B’s.

VOL. c x iv .— A. T

 on November 16, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/

