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Natural selection for least action
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The second law of thermodynamics is a powerful imperative that has acquired several
expressions during the past centuries. Connections between two of its most prominent
forms, i.e. the evolutionary principle by natural selection and the principle of least
action, are examined. Although no fundamentally new findings are provided, it is
illuminating to see how the twoprinciples rationalizingnaturalmotions reconcile to one law.
The second law, whenwritten as a differential equation ofmotion, describes evolution along
the steepest descents in energy and, when it is given in its integral form, the motion is
pictured to take place along the shortest paths in energy. In general, evolution is a non-
Euclidian energy density landscape in flattening motion.
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1. Introduction

The principle of least action (de Maupertuis 1744, 1746; Euler 1744; Lagrange
1788) and the evolutionary principle by natural selection (Darwin 1859) account
for many motions in nature. The calculus of variation, i.e. ‘take the shortest
path’, explains diverse physical phenomena (Feynman & Hibbs 1965; Landau &
Lifshitz 1975; Taylor & Wheeler 2000; Hanc & Taylor 2004). Likewise, the
theory of evolution by natural selection, i.e. ‘take the fittest unit’, rationalizes
various biological courses. Although the two old principles both describe natural
motions, they seem to be far apart from each other, not least because still today
the formalism of physics and the language of biology differ from each other.
However, it is reasonable to suspect that the two principles are in fact one and
the same, since for a long time science has failed to recognize any demarcation
line between the animate and the inanimate.

In order to reconcile the two principles to one law, the recent formulation of
the second law of thermodynamics as an equation of motion (Sharma & Annila
2007) is used. Evolution, when stated in terms of statistical physics, is a
probable motion. The natural process directs along the steepest descents of an
energy landscape by equalizing differences in energy via various transport
and transformation processes, e.g. diffusion, heat flows, electric currents and
chemical reactions (Kondepudi & Prigogine 1998). These flows of energy, as they
channel down along various paths, propel evolution. In a large and complicated
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system, the flows are viewed to explore diverse evolutionary paths, e.g. by
random variation, and those that lead to a faster entropy increase, equivalent
to a more rapid decrease in the free energy, become, in terms of physics, naturally
selected (Sharma & Annila 2007). The abstract formalism has been applied to
rationalize diverse evolutionary courses as energy transfer processes (Grönholm &
Annila 2007; Jaakkola et al. 2008a,b; Karnani & Annila in press).

The theory of evolution by natural selection, when formulated in terms of
chemical thermodynamics, is easy to connect with the principle of least action,
which also is well established in terms of energy (Maslov 1991). In accordance
with Hamilton’s principle (Hamilton 1834, 1835), the equivalence of the
differential equation of evolution and the integral equation of dissipative motion
is provided here, starting from the second law of thermodynamics (Boltzmann
1905; Stöltzner 2003). In this way, the similarity of the fitness criterion (‘take the
steepest gradient in energy’) and the ubiquitous imperative (‘take the shortest
path in energy’) becomes evident. The two formulations are equivalent ways of
picturing the energy landscape in flattening motion. Thus, there are no
fundamentally new results. However, as once pointed out by Feynman (1948),
there is a pleasure in recognizing old things from a new point of view.
2. The probable motion

Probability is the concise concept to denote a state of a system. Forces, i.e.
potential energy gradients and differences, drive the system towards more
probable states via flows of energy that diminish the differences. The principle is
general but it depends on the particular potentials and mechanisms of energy
transfer of how the differences are abolished. A small system may evolve rapidly
by equalizing its potentials with its surroundings, whereas a large system may
evolve over the aeons in the quest for a stationary state in its surroundings.

Usually, motions are described by differential equations. Examples are Newton’s
equation of motion, the time-dependent Schrödinger and the Liouville–von
Neumann equations. Alternatively, motion may be described by integral equations,
e.g. as a Lagrangian or an action. For example, Newtonian mechanics and
Maxwell’s equations (Landau & Lifshitz 1975) can be derived from the principle
of least action, which can also be used in the theory of relativity (Taylor &
Wheeler 2000).

Recently, the second law of thermodynamics was expressed as a differential
equation of motion (Sharma & Annila 2007) for the probability P,
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drives the transport (dxk/dtZKSdxj/dt) between general coordinates xk and xj,
e.g. as diffusion and currents, by draining the potential energy gradients vmk/vxj
and the fields vQk/vxj that couple to the jk-transport process. The notation kBT
for the average energy per particle implies that there is a sufficiently statistic
Proc. R. Soc. A (2008)
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Figure 1. An energy-level diagram depicts schematically transitions between two energy densities
fk and fj at the position xk and xj that are characterized by the entity numbers Nk and Nj and the
Gibbs free energy Gk and Gj, respectively. In the quest for a stationary state, the partition evolves
by equalizing the potential energy difference mkKmj, indicated by the black vertical arrow. The
resulting motion appears as kinetic and dissipated flows of energy. The flow of the kinetic energy is
depicted by the blue arrow. The dissipated (emitted or absorbed) quanta, indicated by the red
arrow, bridge the jk-transformation from Nk to Nj. The dissipation stems from the changes in the
interaction energy dQZv2kdmk when mk transform to mj. The invariant part of the mass is
presented by blue circles that are the constituents of j and k densities. Note that the potentials are
in relation to each other and the line at the bottom is drawn only for illustrative purposes.
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system (Kullback 1959), i.e. a set of repositories of energy where lost and
acquired quanta are rapidly dispersed within. After each dissipative event, i.e. an
emission or absorption, the system settles via interactions to a new partition
corresponding to a new value of kBT, the common reference. The system evolves
by dissipation, i.e. by energy efflux or influx, in the quest to reduce the gradients
in equation (2.2a) and to attain a stationary state in its surroundings.

Similarly to transport processes, diverse transformation processes, e.g.
chemical reactions converting Nk substrates to Nj products or vice versa, are
driven by the propagator (Sharma & Annila 2007)
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: ð2:2bÞ

The chemical potential difference between mk and mj is for convenience denoted as
a gradient vmk/vNj, although this field is not spatially resolved by the observer.
When the surrounding density-in-energy couples to the jk-transformation, it
contributes by vQk/vNj. For chemical reactions, the average energy RTZNAkBT
is, as usual, given per mole via Avogadro’s number NA and Boltzmann’s constant
kB. The chemical potential (Atkins & de Paula 2006), written as mkZkBT ln fk,
where the density-in-energy (Gibbs 1993–1994) is defined as fkZNkexp(Gk/kBT )
for discrete entities k, serves to compare the levels of diverse repositories of
energy with each other (figure 1). The Gibbs free energy Gk contains internal
and surrounding potential gradients, e.g. in the form of the Coulomb force or
electromagnetic radiation field.

The evolution, as given by equation (2.2b), is essentially a restatement of
the Gibbs–Duhem equation (Atkins & de Paula 2006) that relates a decrease in the
chemical potential of one substance to an increase in the chemical potentials of
Proc. R. Soc. A (2008)
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the other substances. In accordance with Le Chatelier’s principle, the system
will evolve towards a stationary state by acquiring from or emitting quanta to its
surroundings (figure 1). In the dynamic equilibrium, gradients vanish but
diverse pools of energy, indexed by j and k, continuously convert to one and
another without net dissipation. These stationary motions along isergonic
trajectories are conserved.

In chemical reactions, substratesNk are distinguished fromproductsNjwhen the
reaction coordinates differ, i.e. energiesGk(xk)sGj(xj). A chemical reaction, which
is a movement along the reaction coordinate, is dissipative if it is endergonic mk!mj
or exergonic mkOmj. Thus, when vmk/vNjKvQk/vNjs0, a transformation process
dNk/dtZKdNj/dt may proceed, whereas when the densities-in-energy fk and fk 0

and associated gradients are equal, then the entities are indistinguishable from
each other.

Likewise, a spatial position xk differs from another position xj, i.e. xksxj when
the motion from one coordinate to another is dissipative. Thus, when vmk/vxjK
vQk/vxjs0, a transport process dxk/dtZKdxj/dt may advance. The dissipative
detection itself may impose the energy gradient, i.e. a field with a sufficient
resolution to distinguish one compound from another, just as one coordinate from
another. On the other hand, when densities-in-energy and their gradients are
equal at xk and xj 0 , then the two coordinates are indistinguishable from each
other. They may, nevertheless, differ by a relative phase 4 along an isergonic
contour. The strength of the potential mk determines the invariant rate uZd4/dt
of conserved motion. Then, a coordinate transformation may be found which
renders the precession time independent. Conversely, a change in phase serves to
determine mk or Nk when Gk is known, subjected to the uncertainty condition
DNkDf (Aharonov & Bohm 1959; Gleyzes et al. 2007).

The essential difference between equations (2.2a) and (2.2b) is the ability
versus inability, respectively, of an observer to resolve an energy transfer process.
When distinct entities within the system are resolved, e.g. by a spatial energy
gradient, equation (2.2a) can be used, whereas when not, equation (2.2b) is the
appropriate form. For example, chemical reactions are customarily monitored
only at the level of ensembles but trajectories of individual reactants, if resolved,
are expected to be similar to those tracked during simulations or calculations. In
the same way, processes in distant stellar objects couple to the observer only via
dissipated quanta. Therefore, even if the kinetic energy of the whole ensemble
vanishes, the dissipation informs us about internal motions that devour the
potential energy gradients in transformations between distinguishable entities
within the unresolved system.

For the resolved (equation (2.2a)) as well as for the unresolved systems
(equation (2.2b)), the shortest path of motion along the steepest descent in
energy will be obtained by minimizing the kinetic energy (2K ) or the
Lagrangian, i.e. the combination of the kinetic and potential energies (KKU ),
or dissipation (Q) because the three measures of energy, as will be described in
the following sections, are interdependent due to the conservation of the total
energy 2KCUZQ.

Evolution as an energy transfer process aims at an equilibrium where gradients
and differences have vanished (figure 2). The process is described from the
observer’s viewpoint so that the densities-in-energy are given by partitions
whereas surroundings are denoted cursorily as fields. The open system evolves
Proc. R. Soc. A (2008)
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Figure 2. Evolving energy landscape is depicted schematically by a series of grey lines as it is levelling
due to the flows of energy towards the stationary state. The flows of energy are driven by the potential
energy difference mkKmj or gradient vmk/vxj between the sites k and j down along the steepest
descents. During the energy transfer, the directed arc s between xk and xj is shortening at the rate
ds/dt. At the equilibrium, net dissipation vanishes and subsequent stationarymotions are conserved.
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via the energy transfer from a partition to another more probable one until a
stationary state in its surroundings is attained. Although transitions within the
system are often of interest, it is the surrounding forces that drive the evolution.
Specifically, a closed or stationary system is not subjected to the evolutionary
forces. It does not evolve and hence time does not advance either. In a historical
perspective, it seems that the concept of a closed system appeared when
Lagrange multipliers, corresponding to a fixed entity number and total energy,
were employed to determine the maximum entropy state where LZ0. By
contrast, the equation of motion (equation (2.1)) that is derived directly from the
probability calculation (Sharma & Annila 2007) elucidates explicitly the driving
forces of evolution by Ls0.
3. The second law as an equation of motion

The second law of thermodynamics given by equation (2.1) is the view by the
system. When the surroundings are lower in energy density, the system
undergoes dissipative jk-transitions from mk to mj by emitting quanta that are
then no longer part of the system. Hence, the energy content of the system is
decreasing. Likewise, when the surroundings are higher in energy density, the
system undergoes jk-transitions from mj to mk by absorbing quanta that become
an integral part of the system. Hence, the energy content of the system is
increasing. Thus, the inequality dS/dtR0 in the second law, i.e. the principle of
increasing entropy S means that the open system is evolving towards a more
probable partition.

The equation of motion, in terms of the logarithmic probability, i.e. entropy
dSZkBd(ln P), is for the resolved transformations
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dt
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where the flow vkZdxk/dt. When the potential mk at xk is higher (lower) than
mj at xj, including the surrounding energy density that couples to the jk-trans-
formation, then the gradient and the flow will be negative (positive), i.e.
vmk/vxjKvQk/vxj!0 (O0) and vk!0 (O0). Thus, dS/dtO0 until the gradients
have vanished and a stationary state dS/dtZ0 has been reached. Likewise, for
the unresolved transformations, the entropy increases at the rate

dS

dt
Z

R

P

dP

dt
ZRLZ

1
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X
j;k

_Nk

vmk

vNj

K
vQk

vNj

� �
R0; ð3:1bÞ

where _NkZdNk=dtZK
P

dNj=dt.
During evolution, given by equations (3.1a) and (3.1b), energy is not conserved

within an open system, hence dS/dtO0. The change in the average energy kBT
resulting from the dissipation is communicated within the system via its inter-
actions. The net dissipation renders the process irreversible and gives the direction
of time (Boltzmann 1905; Eddington 1928; Sharma & Annila 2007). When the
energy flows affect the driving forces vmk/vxjKvQk/vxj, the forces, in turn, redirect
the flows vk. In the absence of invariants of motion, there is no transformation
that would make the evolution time independent. In general, trajectories of non-
conserved motions cannot be traced (Sharma & Annila 2007) but for symmetrical
systems (Noether 1918) analytical solutions (Schwarzschild 1916) can be found.
Although the equation of motion (equation (2.1)) is non-integrable for any non-
trivial system, the energy transfer can be simulated step by step and the evolving
energy landscape can be examined in a piecewise manner.

The probability associates via equation (2.1), and hence also entropy via
equations (3.1a) and (3.1b), with energy but not with other attributes, e.g. a
disorder that is often, but one-sidedly, linked with entropy (Schrödinger 1948).
Obviously, the disorder increases by isergonic phase dispersal due to the sporadic
exchange of quanta with incoherent surroundings. Nevertheless, the probability
PkZhjkjjki of the wave function jk remains the same in the coherent and
decoherent configurations.
4. The differential equation of motion

An increase in entropy (equations (3.1a) and (3.1b)) corresponds to a decrease in
the free energy for both the resolved and unresolved energy transfer processes.
For the resolved transformations, the flows between distinct potentials mk and mj
result in a decrease in the free energy

d

dt
TS ZK

X
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vj
vmk

vxj
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vQk
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X
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The equation states that a flow of the kinetic energy from xk to xj stems from
the decreasing potential mk (vmk/vxj!0) concurrent with the dissipation vQk/vtZ
KSvjvQk/vxj when interactions, defining mk, break apart and yield mj (figure 1).
Likewise, the kinetic energy flowdirects from xj to xk and increasesmkwhen the influx
of energy from the surroundings is bound in interactions and yields mk from mj.
Proc. R. Soc. A (2008)
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Figure 3. Energy landscape is depicted schematically at time t (solid line) and a moment dt earlier
(dashed line) and a moment dt later (dotted line) when an energy flow directs from the high
potential mk at xk down along the steepest gradient (blue arrow) towards the low potential mj at xj.
The expansion illustrates the differential form of the equation of motion: the potential gradient
Kvmk/vxj (black vertical arrow) translates the mass mk into the acceleration ak along a curved path
due to the concurrent dissipation vQk/vxj (red horizontal arrow). During evolution, the potential
energy gradient is diminishing and the dissipation stems from the changes in interactions that show
up as a decrease in mass vkdmk/dt. The curvilinear motion adds up, according to equation (4.2a)
and (4.2b), from the projection of the potential gradient and the dissipation, indicated by the
normal (dotted) of the arc (blue).
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The directional derivatives DZv$V in equation (4.1a) describe a manifold of
energy by time-dependent tangent vectors (Lee 2003). The landscape is levelling
when the flows direct down from the convex regions along the steepest gradients
down along the concave regions. The change in the free energy amounts from the
projection of potentialKv$Vmk and the projection of dissipation v$VQk (figure 3).
Specifically, when there is no dissipative flow d(TS )/dtZ0, the parallel transport
DjmkZ0 (Carroll 2004) does not change the free energy between the densities-
in-energy indexed by j and k.

Likewise, for the unresolved densities-in-energy that appear as point sources
and sinks of the manifold, transformations equalize differences in energy
according to

d

dt
TS ZK

X
j;k
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vmk
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K
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ZK

X
j

DjðmkKQkÞ; ð4:1bÞ

but as was pointed out earlier, the kinetic trajectories remain unresolved and
only dissipation is detected.

The gradient vQk/vxj is the dissipative force that corresponds to the second
term of the time derivative of the momentum pkZmkvk (Newton 1687),

X
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dpk
dt
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where akZd2xk/dt
2 is the acceleration and the energy released from interactions

is denoted by the mass loss dmkZKdQk=v
2
k . In nuclear reactions, the mass

change is apparent, whereas in chemical reactions it is almost negligible. During
many transport processes, the potential energy remains nearly constant.
Consequently, the dissipation is extremely small but non-zero, i.e. the landscape
Proc. R. Soc. A (2008)
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is almost flat. Owing to the dissipation, energy is transferred from mk at xk
towards mj at xj along a curved path. The dissipative force is pictured orthogonal
to the potential gradient (figures 1 and 3). When the two are combined into one,
the orthogonality of the components in KVVZKV(UKiQ) is best denoted by i.

When equation (4.2a) is multiplied by velocities dx/dt and integrated over
time, the familiar conservation 2KZKUCQ for energy in the forms of kinetic
(K ), attractive potential (U ) and dissipation (Q) is obtained. Its time derivative
d(2K )/dtZKv$V(UKQ), when written using the continuity v/vtZv$V, is the
flow equation (equations (4.1a) and (4.1b)). The energy flow is expelled from
the open system to its surroundings as the matter dmk at the velocity vk and/or
radiated at the speed of light c.

A conserved system that complies with the integrated condition 2KCUZ0 is
without the net dissipation hQiZ0. In other words, the mass is invariant
dmk/dtZ0 and the forces balance as SmkakZKSvmk/vxj. Then, it is, at least in
principle, possible to find a solution to the equation of motion (the Liouville
equation) by a transformation that renders the Hamiltonian time independent.

Likewise, for the unresolved transformations, the forces due to the unresolved
spatial potential gradient and the detected energy flux add to each other as vectors,

X
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€N k C _Nk
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K
vQk
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� �
; ð4:2bÞ

where mk denotes the mass in motion from compounds Nk to Nj. For example, in
chemical reactions, the mass change dmk relates to electronic restructuring,
whereas nuclear masses mk remain intact. The flow rate €N kZd2Nk=dt

2 is
proportional to the potential energy gradient and to the mechanisms of energy
transduction (Sharma & Annila 2007).

Although motions are not resolved, the notion of the kinetic energy is not
meaningless (Gyarmati 1970). The observed dissipation discloses that energy
does flow from higher to lower potentials within the system in the quest for a
stationary state with its surroundings (figure 3). The dissipated quanta may, on
their way, be influenced by new gradients before being absorbed j1i/j0i in a
detecting potential where the particular energy transfer process ends. The
equation of motion for the electromagnetic energy transfer, corresponding to
equation (4.1a) and (4.1b), is due to Poynting (1920). It can be used to picture
the propagation of light analogously to figure 3 but will not be digressed into.

Customarily, non-dissipative motions are described by the Euler–Lagrange
equation that can be derived by varying the point (x, t) in the middle of an
infinitesimal space–time interval (Hanc et al. 2004) to determine the stationary
trajectory (figure 4). The dissipative motions are described by the dissipative
Euler–Lagrange equation (Nesbet 2003)

X
j;k

d
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vLk

vvj
K
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vQk

vxj
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where the Lagrangian LkZKkKUk for the transport processes contains the
kinetic KkZ1=2mkv

2
k and potential UkZmk energy terms. The emitted or

absorbed quanta SkQks0 in the ksj transitions are included. However, equation
(4.3) does not explicitly identify the changes in interactions as the emission
Proc. R. Soc. A (2008)
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sources or sinks of absorption, unlike equation (4.2a) that shows the mass
changes. When identities are created or destroyed, the dissipation is invariably
accompanied. Owing to the finite transformation rates (c, vk or _Nk), it takes time
to distinguish xk from xj (Nk from Nj) on the basis of an energy difference
(GksGj) by a dissipative process (Brillouin 1963). The dissipative flow of energy
hQis0 manifests itself as the flow of time.

Both the resolved and unresolved transformations direct from high potentials
down to low potentials along the steepest gradients in energy in terms of both
vmk/vxj and vQk/vxj. In the following, it is argued that these paths, also known as
the geodesics, are the shortest in energy, i.e. in space and time.
5. The integral equation of motion

The integral form of the differential equation (equation (4.2a)) for the resolved
processes is known as the abbreviated action. The r.h.s.

A0 ZK

ð ðX
j;k

vmk

vxj
K

vQk

vxj

� �
dxj dt ZKðUKQÞt ð5:1aÞ

amounts from the potential energy U and the dissipation Q, when the energy
flows down along the gradients during the time period dt and over the spatial
distance dx. Likewise, for the unresolved transformations (equation (4.2b)), the
integral form is

A0 ZK

ð ðX
j;k

vmk

vNj

K
vQk

vNj

� �
dNj dt ZKðUKQÞt; ð5:1bÞ

where the free energy is consumed in dissipative transformations during dt. The
l.h.s. of equation (4.2a) is the form proposed by Maupertuis,

A0 Z

ðX
k

pk dxk Z

ðX
k

pkvk dt Z 2Kt; ð5:2aÞ

that amounts from the kinetic energy 2KZ
P

mkv
2
k during t. When equations

(5.1a) and (5.2a) are equated, the integral form of continuity, actio est reactio
(the interaction principle), is obtained. The integrands sum as 2KCUZQ. For
the non-dissipative motions along isergonic trajectories hQiZ0, the familiar
condition of a stationary state 2KCUZ0 is recovered.

In general, the integral equation of motions just as the differential form cannot
be solved because the driving forces, i.e. the potential gradients, are consumed by
the flows. There is no invariant of motion and evolution may redirect its course.
Therefore, to allow for a changed destination, the integrals are left indefinite.

It is of interest to examine a short stretch of the path where energy is in
motion from mk to mj. The directed arc s that is interconnecting the two
repositories on the energy landscape is shortened by ds during dt (figure 5).
When the short arc ds is approximated by a straight chord, the dissipative
directional step can be carried out by complex numbers so that the differential
ds, associated with the potential energy change, adds with the dissipation-
associated differential ic dt along the orthogonal direction, indicated by i, to
Proc. R. Soc. A (2008)
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Figure 4. Expanded fraction of an energy landscape illustrates the Euler–Lagrange differential form
of the integral equation of motion. The shortest path is found by minimizing the distance LZKKU
(dotted line) to the point (x, t) on the infinitesimally short path. Along this optimal path of energy
dispersal, the change in the potential U transfers into the kinetic energy K and the dissipation Q.

ii

Figure 5. When the energy flows from the high potential mk down along the shortest path (solid line)
towards the low potential mj, the directed path s between xk and xj is shortening at the rate ds/dt. The
expansions describe the local metric of the curved landscape. (a) The momentum vector vZuCiq is
a sum of the momentum due to the potential energy change uZK

Ð
ðvmk=vxjÞdt and the concurrent

dissipation qZ
Ð
ðdQk=dxjÞdt along the orthogonal direction. The metric u2Zv2Kq2 of the landscape

is the Lorentz covariant with respect to a change in the frame of reference (dashed line). (b) When a
short local path ds on the non-Euclidian manifold is approximated by a straight chord, the kinetic
energy (ds/dt)2 (blue line) amounts from the change in the potential (ds/dt)2 (black vertical line) and
the dissipation (c dt/dt)2 (red horizontal line) according to Pythagoras’ theorem.
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result in the differential dsZKdsCic dt that associates with the kinetic energy.
When multiplying with the complex conjugate ds�, the familiar expression
ds2Zds2Kc2 dt2 for the local metric is obtained (Taylor & Wheeler 2000; Berry
2001). The squared differentials associate with the attractive potential energy
UZKm(ds/dt)2, the kinetic energy 2KZm(ds/dt)2Zmv2 and the dissipated

energy QZmc2(dt/dt)2. Thus, after multiplying with dt2/mc2, it is observed that

it is the conservation of energy UZQK2K that defines the Lorentzian manifold
with the familiar metric dt2Zdt2Kds2/c2, where the proper distance s is related
to the proper time t by c2dt2ZKds2.
Proc. R. Soc. A (2008)
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The unresolved jk-transformations _NkZK
P

_Nj convert the energy associated
with mk to

P
mj with concomitant dissipation. When interactions break apart,

some mass Dmk is dissipated, most apparent in nuclear reactions but also non-
zero in other evolutionary processes. Since the system as a whole is not observed
to move, only the dissipation associated momentum DpkZmk

_NkK
P

mj
_NjZ

Dmk
_NkZ

P
jQk= _Nk is detected. Integration over dt,

A0 Z

ðX
k

Dpk dNk Z

ðX
j;k

Qk

_Nk

_Nk dt ZQt; ð5:2bÞ

gives the net dissipation due to the flows of energy between distinct potentials
during t. An efflux will consume a high potential, whereas an influx will build up a
low potential until the stationary state in the surroundings is attained.When the net
energy flow from and to the system has vanished hQiZ0, the through-flux suppor-
ting the stationary state is at maximum. This is the maximum power principle
(Lotka 1922). The principle of minimum (net) dissipation (Moiseev 1987) refers to
the state ofminimumfree energy. In this sense, it is also re-expressing the second law.

Customarily, the dissipative Lagrange form of action

AZ

ð
L dt Z

ðX
j;k

1

2
mkv

2
kKmkKQjk

� �
dt ð5:3Þ

is preferred over the Maupertuis form (equation (5.2a)). However, since 2K,
LZKKU and Q are interdependent by the conservation of energy (figure 4),
identical results are obtained either by minimizing A0 for 2K (or Q) or A for L.
The shortest path in energy is the one where the kinetic energy 2K as the
integrand of the abbreviated action or the Lagrangian LZKKU or the
dissipation Q is at minimum.
6. Manifold in motion

The thermodynamic description of an energy landscape in motion, as outlined
previously, expresses the basic conservation laws for energy and its differential, i.e.
force, as well as for the energy integral, i.e. action, and its differential momentum.
These equations of evolution state that the time-dependent manifold of energy
densities is continuous. The flows of energy are most voluminous between the well-
connected reservoirs. The connected densities-in-energy make an affine manifold
(Lee 2003; Carroll 2004), i.e. a system, where a flow from a high density necessarily
passes through the neighbouring coordinates on its way towards a low density.

The evolving landscape is described by the calculus of variations that is
equipped with powerful mathematical machinery conceived by Gauss and
elaborated further by Riemann (Weinberg 1972; Carroll 2004). The mathemat-
ical counterpart for the thermodynamic evolution is the geometric evolution
vtgjkZK2Rjk (Chow & Knopf 2004). The Riemannian manifold deforms via the
Ricci flows that are driven by the curvature tensor Rjk. In analogy to the
surrounding fields that are included along with the thermodynamic potential
gradients, the Ricci flows may also be powered by additional vector fields. The
negative sign signifies that the Ricci flows contract the positively curved regions
and expand the negatively curved regions of the manifold, in accordance with the
Proc. R. Soc. A (2008)
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thermodynamic evolution that flattens heights and fills depths of energy densities
(figures 2–5), as well as stretches the saddle regions. Since our description
provides mathematically nothing new, we will not make excursions to rephrase
the well-established results. Rather, we will picture an evolving space–time as an
energy transfer process at a formal level without reference to the explicit forms of
diverse potentials and their gradients, i.e. fields.

According to thermodynamics, the space is not empty but energized. If there is
no energy in a form of U and no radiation Q, the space–time is empty (does not
exist), i.e. 2KZ0 (Foster & Nightingale 1994). The manifold, given above as a
tangential vector field, is customarily given by elements gjk of the metric tensor
GZJTJ, which is obtained from the Jacobian J. Since the jk-path is directional,
the Jacobian element Jjk!0 means that the density at xk (or Nk) is decreasing
during evolution in favour of xj (or Nj) until the energy gradients (or differences)
have vanished. The corresponding transposed element JkjO0 is illustrative in
identifying the coordinate xj as the site of mj in the same way as the coordinate xk
associates with mk. Thus, the transposition literally means a change in the
viewpoint on the common landscape. As usual, the trace, determinant and
discriminant of J disclose motional modes of the manifold (Strogatz 2000).

At the stationary state, there is no dissipation and there is no directionality of
time and no evolution of the metric either. The space is flat without net forces
and all dynamics are conserved during the period of integration. Along an
isergonic contour where hQiZ0, dS/dtZ0 and Tr(J )Z0. The dynamics of the
manifold about a local point is revealed by the discriminant of the characteristic
equation. The conserved motions retain all energies at xk(Nk) or return to it
without net dissipation after t has elapsed in cyclic or sporadic excursions
about xk. Hence, the potential (ds/dt)2 equals the energy in motion (ds/dt)2 in
accordance with the familiar condition UC2KZhQiZ0. For example, the
constant curvature, i.e. a fixed radius r, means that 2KZm(ds/dt)2Z
mr 2(d4/dt)2Zmr 2u2ZKU, where the characteristic frequency u is determined
by the strength of the potential. Likewise, the basic wave equation is an
expression for the geodesic in a constant potential.

According to thermodynamics, time is only a convenient way to compare the
relative rates of dissipative processes that are flattening the energy landscape.
The manifold is levelled by the flows that may also be viewed as motions that
dilute energy density. The famous invariant of motion dt/dtZ(1Kv2/c2)K1/2Z
E/mc2 relates, for example, the source of quanta to the sink that is receding with
high velocity v. Thus, the general coordinates, customarily given by space and
time, intermingle with each other in dissipative motions that unfold the manifold
of energy densities. Since the rate of dissipation depends on the surrounding
energy densities that may differ radically from those which we are accustomed to
on Earth, some observations may appear peculiar and counter-intuitive to us.
7. Discussion

Ludwig Boltzmann expressed his unrelenting desire to connect the second law
with the principle of least action, as late as 1899 when closing his lectures at
Clark University by saying ‘It turns out that the analogies with the second law
are neither simply identical to the principle of least action, nor to Hamilton’s
Proc. R. Soc. A (2008)
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principle, but that they are closely related to each of them.’ (Boltzmann 1905).
Apparently, Boltzmann yearned also to express Darwin’s theory of evolution by
natural selection in terms of statistical mechanics when saying that the existence
of animate beings is a struggle for entropy (Boltzmann 1974).

In retrospect, it seems that both the objectives of Boltzmann were somehow
concealed already early on. Apparently, the primary objective at that time was
to find the equilibrium state partition that is characterized by the well-known
Boltzmann factors. Since the equilibrium per definition has zero free energy, the
driving force of evolution that led to the stationary state remained obscure.
Therefore, in many cases, the Boltzmann factors still today are imposed ad hoc to
command the system to a stationary state, rather than allowing the system on its
own to find the way via natural motions to the equilibrium with its surroundings.
Perhaps the elegant mathematical machinery due to Joseph-Louis Lagrange,
which is also employed today to determine the equilibrium partition, disguised
the physics of evolution, i.e. the probabilities are not invariant but relate to the
free energy (Sharma & Annila 2007). Thus, the irreversibility is exclusively based
on reasons of probability (Ritz & Einstein 1909; Zeh 2007).

The contemporary obsession to predefine the steady state appears also in the
desire for normalized probabilities. A norm associates with symmetry and
facilitates calculus. However, probabilities keep changing with a changing energy
landscape. This is also the basic idea of Bayesian inference (Bayes 1763), yet
another early and conceptually sound realization of evolution, in particular when
augmented with the steepest ascent imperative (Jaynes 2003). In general, all
paths are explored (Feynman & Hibbs 1965) to distribute energy flows through
them according to the principle of least action. Excursions on the energy
manifold, e.g. by random variation, will sooner or later naturally converge on the
most probable, the shortest paths that follow the steepest gradients in energy.

The principle of increasing entropy, equivalent to the decreasing free energy, is
pure and austere but its mechanical manifestations can be complex and intricate.
The energy transfer involving the coherent motions between a small system and
its surroundings may display complicated phenomena (Sudarshan & Misra 1977;
Schieve et al. 1989), whereas energy transduction in a large hierarchical system,
channelling via numerous paths, becomes easily intractable. For example,
numerous enzymes that constitute metabolic machinery of a cell are viewed here
as mechanisms that transform chemical energy from one compound pool to
another. Likewise, species of an ecosystem form a chain of energy transduction
mechanisms that distribute solar energy acquired by photosynthesis. Since the
mechanisms of energy transduction are also themselves repositories of energy,
other mechanisms may, in turn, tap into and draw from them. Therefore,
evolutionary courses and responses to environmental changes of many
ecosystems are difficult to predict precisely. Technically speaking, although the
equation of motion is known, it is non-integrable.

Particularly, intriguing phenomena may emerge when a high-energy source,
such as the Sun, is powering a large energy transduction network, such as that on
Earth. When a steady stream of external energy is falling on an open system,
there is a driving force to assemble mechanisms from the available ingredients
and to improve on them in order to acquire more energy in the quest for a
stationary state. The driving force makes no difference between abiotic and biotic
mechanisms of energy transduction but favours all those that are dispersing
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energy more and more effectively. Therefore, the large global system is, in the
language of thermodynamics, an energy manifold in myriad motional modes,
most of which are referred to as life. For the large global system that apparently
has a suitable mixture of ingredients to couple to the high-energy influx, it has
taken aeons to evolve in energy transduction. Although the abstract description
of evolution provided by the statistical physics results in a holistic view of
nature, it is unarmed to say specifically how energy transduction mechanisms,
i.e. species, have emerged. These questions can be addressed by appropriate
models. The present formalism emphasizes the imperatives in evolution.

The role of (genetic) information is undoubtedly important in evolution but it
has not been elaborated in this study. However, considering the close connection
between mathematical communication theory (Shannon 1948) and statistical
physics (Kullback 1959), it is not surprising that a piece of information, due to
its physical representation (Landauer 1961), is identified by thermodynamics to
a deviation from the average energy density. Since deviations are consumed
during the probable motion, thermodynamics sheds light on the origin of
(genetic) information as a powerful mechanism to increase energy transduction.
Thus, life has not only emerged on Earth but also the globe has evolved to a
living planet (Lovelock 1988). To extend the thermodynamic description to
biotic systems is not new (Lotka 1925) but consistent with many earlier studies
that are based on the principle of increasing entropy or reduction of gradients
(Ulanowicz & Hannon 1987; Brooks & Wiley 1988; Salthe 1993; Schneider & Kay
1994; Chaisson 1998; Lorenz 2002).

The established connections between the differential and integral equations of
evolutionary motions may appear naive and the conclusions may seem simple by
modern standards. On the other hand, the presentation, using the basic concepts
of physics, is in accord with the inspiring ideas about the evolving nature that
appeared in various forms during the past centuries. In summary, tracks of
evolution are non-deterministic because the energy flows will affect potentials
that, in turn, will alter the flows. The trajectories are integrable only when a
stationary state without net dissipation is reached. The contrast between the
non-conserved dissipative motions and the conserved stationary-state stance has
been phrased so that the subjective non-Euclidian world, i.e. a curved landscape,
happens (evolves), whereas the objective Euclidian world, i.e. a flat landscape,
simply is (stationary; Weyl 1949).

We are grateful to Mahesh Karnani, Janne Nuutinen, Tuomas Pernu, Kimmo Pääkkönen and
Vivek Sharma for their many informative and insightful corrections and comments.
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Ritz,W.&Einstein, A. 1909 Zumgegenwärtigen stand des strahlungsproblems.Phys. Z. 10, 323–324.
Salthe, S. N. 1993 Development and evolution: complexity and change in biology. Cambridge, MA:

MIT Press.
Schieve, W. C., Horwitz, L. P. & Levitan, J. 1989 Numerical study of Zeno and anti-Zeno effects in

a local potential model. Phys. Lett. A 136, 264–268. (doi:10.1016/0375-9601(89)90811-6)
Schneider, E. D. & Kay, J. J. 1994 Life as a manifestation of the second law of thermodynamics.

Math. Comput. Model. 19, 25–48. (doi:10.1016/0895-7177(94)90188-0)
Schrödinger, E. 1948 What is life? The physical aspects of the living cell. Cambridge, UK:

Cambridge University Press.
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