
rspa.royalsocietypublishing.org

Research
Cite this article: Biggins JS, Warner M. 2014
Understanding the chain fountain. Proc. R.
Soc. A 470: 20130689.
http://dx.doi.org/10.1098/rspa.2013.0689

Received: 15 October 2013
Accepted: 2 December 2013

Subject Areas:
mechanics

Keywords:
chain fountain, bead, siphon mechanics

Author for correspondence:
J. S. Biggins
e-mail: jsb56@cam.ac.uk

Understanding the chain
fountain
J. S. Biggins1,2 and M. Warner1,3

1Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge, UK
2Trinity Hall, Trinity Ln, Cambridge, UK
3Rutherford School Physics Project, Cambridge, UK

If a chain is initially at rest in a beaker at a height
h1 above the ground, and the end of the chain
is pulled over the rim of the beaker and down
towards the ground and then released, the chain will
spontaneously ‘flow’ out of the beaker under gravity.
Furthermore, the beads do not simply drag over the
edge of the beaker but form a fountain reaching a
height h2 above it. We show that the formation of
a fountain requires that the beads come into motion
not only by being pulled upwards by the part of the
chain immediately above the pile, but also by being
pushed upwards by an anomalous reaction force from
the pile of stationary chain. We propose possible
origins for this force, argue that its magnitude will be
proportional to the square of the chain velocity and
predict and verify experimentally that h2 ∝ h1.

1. Introduction
Chains are among the simplest, oldest and most
ubiquitous of technologies. Because chains have great
strength in tension but none in compression, their
use typically requires a pile or spool of slack chain
to be straightened into a tensile state by pulling on
the end. One might imagine that this process would
be comprehensively understood. However, Mould [1]
recently demonstrated that if a long chain is held in an
elevated pot, and the end of the chain is pulled down
towards the ground, the chain will not only start to
‘flow’ out of the pot and down to the ground, it will
spontaneously leap above the rim of the pot forming
a fountain, as shown in figure 1. This is sufficiently
surprising that several million people have viewed these
videos. Here, we show that these viewers are right to be
surprised: to explain the existence of the fountain, we
must revisit traditional notions of how chains are picked
up and conclude that the chain is not only pulled into
motion by its own tension above the pile, but also pushed
into motion by the pot.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. (a) Mould demonstrates a chain fountain. We thank J. Sanderson for permission to reproduce this photograph.
(b) Our minimal model of a chain fountain. A chain, with mass per unit lengthλ, is in a pile on a flat table a distance h1 above
the floor. It flows to the floor at a speed v along the sketched trajectory, with TT being the tension just above the table, TC the
tension in the small curved section at the top of the fountain and TF the tension just above the floor.

The origin of the chain’s flow from pot to floor is clearly the release of gravitational potential
energy in a manner similar to a fluid siphon. The weight of the chain hanging between the pot
and the floor pulls the chain out of the pot. The reason the beads leap above the pot remains
unclear. We start our analysis with the simplest possible model of the chain fountain, sketched in
figure 1. Our model consists of a chain with mass per unit length λ, a pile of which is on a table at
a height h1 above the floor and is ‘flowing’ down to the floor in a trajectory that is first vertically
up for a height h2, then reverses velocity in some small region of high curvature, then travels
vertically down a distance h1 + h2 before finally coming to rest in a second pile on the floor. In a
steady state, the moving part of the chain all moves at a speed v along the chain’s length. In our
initial analysis, we assume the curved region at the apex of the fountain is small enough, and
has tight enough curvature, that the centripetal acceleration is much larger than the gravitational
acceleration (v2/r � g). The centripetal acceleration is then provided by the tension in the chain.
If the (local) radius of curvature is r and the tension in the curved region is TC, then

TC

r
= λv2

r
�⇒ TC = λv2. (1.1)

The cancellation of the radius of curvature from the above equation is quite remarkable. It
indicates that a chain flowing along its own length can turn an arbitrarily sharp corner or
trace any other shape provided the tension T = λv2. This eliminates the intuitive explanation
for the chain fountain, namely that the chain must leave the beaker approximately vertically,
and the inertia associated with this motion generates the fountain as the velocity cannot be
immediately reversed. Given tension T = λv2, the chain could turn an arbitrarily sharp corner
immediately above the rim of the pot. In reality, the links prevent the chain from exceeding a
large maximum curvature, but the curvature in the chain fountain is well below this limit. The
cancellation of r also means that a chain flowing along its own length can (in the absence of forces
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other than tension) form a steady-state tracing any shape. This fact has been known since at least
the 1850s: it features in Routh’s dynamics textbook [2] and was known to the examiners of the
1854 Cambridge maths tripos [3].

The vertical portion of chain above the table is all moving at constant velocity, so the forces on
it must balance, giving

TC = TT + λh2g, (1.2)

where g is the acceleration owing to gravity. The weight of the h2 section of chain is λgh2, and TT
is the tension just above the table. Similarly for the vertical portion above the floor, we have

TC = TF + λ(h2 + h1)g, (1.3)

where TF is the tension just above the floor. In a time interval dt, a mass of chain λv dt is picked up
from the table and acquires momentum λv2 dt. Traditionally, we would expect this momentum
to be provided by the tension TT in the chain immediately above the table, giving TT = λv2.
Combining this with equations (1.1) and (1.2), we immediately see that h2 = 0; there is no fountain.
Similarly, at the floor end of the chain in a time interval dt, a mass of chain λv dt is brought to rest.
Traditionally, because the chain is bought to rest by the floor, we expect this momentum to be
provided by the floor, requiring that TF = 0. Then, equations (1.2) and (1.3) give v = √

h1g.
The above treatment of the chain fountain is highly dissipative. A unit length of chain

releases potential energy λgh1 but acquires only a kinetic energy of (1/2)λv2 = (1/2)λh1g. This
loss accords with the traditional view that picking up a chain with a constant force belongs to
that class of dynamical problems where simple momentum conservation demands that half the
work done is lost while half is converted into kinetic energy. This loss is implicit in Feynman’s
treatment of the problem [4] and discussed explicitly by the Rutherford School Physics Project
[5]. Sand falling onto a moving conveyor belt is another example [5], whereas charging a
capacitor at constant voltage is an electrical analogue. One can see the dissipation in detail:
if a chain with mass λ per unit length is being picked up at a speed v from a pile, then
the links are accelerated into motion by the tension TT just above the pile. In a time dt, the
length of chain picked up is ds = v dt, requiring a momentum (λv dt)v = λv2 dt, so, TT = λv2.
The tension does work TT ds = λv2 ds, but the chain receives only kinetic energy (1/2)λv2 ds, so
half the work is dissipated.

As Mould did observe a fountain with a non-zero h2, we must revisit these traditional ideas
about chain pick-up. For h2 > 0, we must have TT < λv2, so we must ask, if the tension in the
chain is not providing all the momentum in the chain that is picked up, where is the rest coming
from? The only possibility is that it is coming from the pile of chain and hence ultimately the pot.
Accordingly, we introduce an anomalous upwards force R from the pile that acts on the part of
the chain being brought into motion. Similarly, we introduce an anomalous finite tension TF that
acts to slow down the link being brought to rest on the floor. The momentum of the chain that is
being picked up is now provided by both R and TT gives

TT + R = λv2. (1.4)

On dimensional grounds, all the forces must be proportional to λv2, so we write

R = αλv2 and TF = βλv2, (1.5)

where setting α = β = 0 recovers the traditional view. We can now straightforwardly solve our
equations to yield

h2

h1
= α

(1 − α − β)
and v2 = h1g

(1 − α − β)
, (1.6)

our principal results. One again sees that in the classical case α = 0 gives h2 = 0, that is no fountain.
Otherwise, h2 ∝ h1. We verify this result experimentally in figure 2.
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Figure 2. Fountain height h2 plotted against drop h1, the linear fit has h2 = 0.14h1. The datawere collected using a 50 mnickel-
plated brass ball-chain consisting of balls of diameter 4.5 mm connected by rods of length 2 mm, shown in figure 3. The chain
was fed into a 1l plastic beaker in a random configuration, and the beaker was elevated to a distance h1 above the ground.
The end of the was pulled beneath the beaker and tugged slightly downwards to initiate the fountain. The fountain was filmed
against ametre ruler to ascertain the fountain heighth2. Very small fountain heightswere notmeasured because, if the fountain
height is less than the height of the rim of the beaker, then the fountain is supported by the beaker rather than free standing.
(Online version in colour.)

A unit length of chain gains kinetic energy (1/2)λv2 and releases potential energy λgh1. The
ratio of the two is

KE
PE

= (1/2)v2

(gh1)
= 1

2(1 − α − β)
. (1.7)

Classically, α = β = 0, this ratio is 1/2, and half the potential energy is dissipated in the pick-
up process. Conservation of energy forbids the ratio in equation (1.7) going above 1, requiring
α + β ≤ 1/2. The highest fountain would thus be made if α = 1/2, β = 0, yielding h2 = h1 and no
energy dissipation during the pick-up process; however, this bound is significantly in excess of
the observed fountain heights of h2 ∼ 0.14h1.

We now consider the physical origin of the reaction force R = αλv2 that gives rise to the chain
fountain. At first sight, it is highly counterintuitive that the origin of the fountain should be the
pot pushing upwards on the chain. We model the chain as a set of freely jointed rods each with
length b, mass m and moment of inertia I. Links being set into motion are of necessity mostly at
rest with a horizontal orientation, and are pulled at one end by preceding links that are directed
largely upward. We model this via the situation in figure 3, where a single link is being picked
up by a vertical force TT applied at one of its ends. This upward force induces it to both rise and
rotate. If the rod were in free space, then this motion would result in the other end of the link
moving down. However, if the rod is sat on a horizontal surface (modelling either the table or the
rest of the pile of chain), then this cannot happen, so the pile must supply an additional upwards
reaction force R acting at this end of the link.

In the initial stage, there is a linear acceleration a and an angular acceleration ω̇. To avoid the
end at R being rotated through the table, one needs a = (b/2)ω̇ and an R acts to achieve consistent
rates of change of linear and angular momentum. We use the initial force values as estimates of
those acting during pick-up, thus

TT + R = ma and (TT − R)
(

b
2

)
= Iω̇, (1.8)

from which, (using ω̇ = a/(b/2))

R = 1
2

ma
(

1 − I
(1/4)mb2

)
. (1.9)
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Figure 3. (a) A rigid rod of mass m and moment of inertia I lies on a horizontal surface (in practice the pile of chain) and is
picked up via a vertical force TT applied at one end causing the rod’s centre of mass to rise at a speed v. In order for the rod
not to penetrate the surface, the surface must also provide a vertical reaction force R on the opposite end of the rod. (b,c) The
ball chain in our experiments required six beads to turn by π (middle), so we model a link of the chain as consisting of three
identical point masses (beads) connected by massless rods (right).

In addition, TT + R = ma must be the upward momentum flux λv2 on pick-up. Replacing ma in
equation (1.9), we obtain

α = R
λv2 = 1

2

(
1 − I

(1/4)mb2

)
. (1.10)

One can estimate I of a link by recognizing that large bend in our chain is only achievable over
about six beads, so we model one link in the chain as three connected beads (figure 3). The
moment of inertia about the centre of mass is I = 2(m/3)(b/2)2 = mb2/6, which yields α = 1/6. If β

is small, then this yields h2 ∼ h1/5. Such rises are on the order of those observed.
The above estimate of α is somewhat crude, but in addition to the numerical estimate two

general points emerge from it. First, we have R ∝ λv2, as we expect on dimensional grounds.
Second, we see that the precise value of α depends on the details of the chain: in the above,
it depends on the ratio mb2/I but, in general, it could depend on many details of the chain or
indeed the conformation of the chain in the pile. We note that because I ∝ b2 for any link, α (and
hence the fountain height) does not depend on the absolute size of the link (b), so our model
would still apply in the continuum or string limit b → 0, and string fountains have indeed been
observed [6]. The above mechanism is only one way to generate a non-zero α. An alternative
would be to recall that our chain consists of spheres connected by rigid rods. When a segment of
chain starts to move, it may sometimes first move along its tangent (i.e. horizontally), resulting
in the beads being dragged across the pile of stationary beads. This would result in collisions
between the beads in the horizontally moving part, and the stationary pile beneath that would
kick the horizontally moving beads in the vertical direction, resulting in a non-zero R.

It has previously been observed [7,8] that if two equal lengths of hanging chain are released,
one to fall in free space and one onto a table, the former accelerates at g whereas, astonishingly, the
latter can accelerate faster than g. Acceleration faster than g can be explained only by an additional
downward force acting on the chain, that is, a non-zero β. The effect is the opposite of that
discussed above and was very pronounced for the extreme type of chain in Grewal et al. [8]. Our
chain is very different (though [7] consider a bead chain), and in a similar but crude experiment
we did not observe this effect, suggesting that for our chain β is small. More importantly, the
functional form of equation (1.6) means that the fountain height does not much depend on β—it
is α not β that creates the fountain.

We tested our theory, that an anomalous reaction force from the pot accounts for the chain
fountain, by conducting a simple numerical experiment. We modelled the chain using point
masses connected by stiff springs (that did not otherwise interact). An ordered pile of chain
was arranged on a horizontal ‘table’ with which the masses collided elastically, and the end
of the chain extended to the floor, which was modelled by a highly viscous liquid which brought
the masses to a stop. The system was then integrated using a Verlet scheme and did indeed
produce a chain fountain. Our numerical model did not have sufficiently stiff springs to accurately
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approximate an inextensible chain, so we cannot perform a quantitative comparison between
numerics and theory, but we were able to test the main hypothesis of our paper, namely that for
a fountain there must be an α > 0 producing an upward force from the table during the pick-up
process. In our numerics, elastic collisions between the masses and the ‘table’ provided this force.
We then removed the ‘table’ and instead supported the chain numerically by having a region of
zero gravity around the pile. The chain still flowed to the ground, but there was no fountain. This
is expected as in this case there was no possible mechanism to produce an α, and confirms that to
make a fountain the pot (or table) must push on the chain.

Some may worry that our model of the chain fountain is simply too crude to predict a fountain
without an α. A much more complete approach would be to solve for the full shape of the
fountain. We imagine the fountain is in a steady state, so that the moving part of the chain all
moves at speed v along the direction of the chain and that, a distance s along the chain, the
chain makes an angle θ (s) with the vertical. Force balance parallel to the tangent of the chain
then gives

T′(s) = λg cos θ , (1.11)

while perpendicular to the tangent of the chain the forces must provide the necessary centripetal
acceleration for the links in the chain going round the local curvature 1/r = θ ′(s) meaning

T(s)θ ′(s) + gλ sin θ = λv2θ ′(s). (1.12)

If v were zero, then these equations would be the same as those for a chain hanging under
gravity, and would be solved by it taking a catenary form. If the chain is moving, then we see
in equation (1.12) that this simply requires a constant addition λv2 to T(s), and that the equations
are still solved by any inverted catenary [9]. Thus, we expect the chain to take on the form

y = d cosh
(

(x − l)
d

)
+ c. (1.13)

We note this is an example of a more general result. If a chain hangs in a stationary equilibrium
under the action of forces that only depend on position then, if the chain is induced to move
along its length with a speed v, then the tension will increase by λv2, and the original shape of
the chain will not be changed by the movement [3]. The challenge with the chain fountain is
to apply boundary conditions to fix these constants. Classically, we would again set TT = λv2 at
the table end of the catenary while at the top of the catenary (where θ = π/2), equation (1.12)
gives TC = λv2 − gλ/θ ′(s) ≤ λv2. In addition, equation (1.11) guarantees that TC ≥ TT = λv2. The
only way to reconcile these inequalities is to have the top of the catenary happen with
θ ′(s) → ∞ (i.e. infinitely sharply) and immediately above the table, in which limit both equations
give TC = TT = λv2. Placing the top of the catenary immediately above the table corresponds to
no fountain. It is possible to build α and β into the catenary analysis. Curiously, this is not enough
to fix all the unknowns in the solution, one must also specify an additional boundary condition
corresponding to the angle the chain leaves the pot at which, in practice, can be fixed by tilting the
pot. In the limit of small angle (i.e. nearly vertical pick-up), the catenary analysis reduces exactly
to the simple model sketched in this paper.

Our treatment of the chain fountain is far from complete. The pick-up of the chain involves
a point of rise that constantly traverses the chain pile. A transverse component to pick-up
results in links being picked up with some transverse velocity and requires the consideration
of transverse forces. These rapidly changing transverse velocities lead to the formation of high
amplitude transverse waves in the section of chain immediately above the pick-up point. These
waves contain some of the energy that is being dissipated during the pick-up process, and their
wavelength and amplitude are probably related to the conformation of the chain in the pot. The
connection between the conformation of the chain, these waves and the observed value for α

remains an interesting problem. Strikingly, the waves appear almost stationary in video footage.
This last property is easily explained: the wave speed on a chain is given by

√
T/λ, where T is the
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tension. At the apex of the fountain, we have TC = λv2 and hence the wave speed and the actual
speed of the chain are the same. Backward propagating waves will appear frozen at the apex.
Between the pot and the apex, T is close to λv2, so the waves are almost stationary.

Hanna & Santangelo [10] have recently discussed a highly interesting problem: the formation
of an arch when a long chain was arranged in ordered rows on a table, and the end of the
chain was then pulled at constant velocity along the table. Despite the apparent similarity to our
fountain, there is an obvious difference: they pull perpendicular to the axis of the arch, whereas
we pull parallel. In their geometry, the formation of any arch is a surprise (because the chain
could remain in the plane of the table) which Hanna and Santangelo explained by showing
that, in a region of rising tension between the (zero tension) rows and (high tension) moving
portion of the chain, a perturbation transverse to the table will tend to steepen rather than tend
to flatten. They propose that this effect leads to the formation of structures perpendicular to the
table which in turn lead to the arch because they are rectified by the table. The rectifying effect
is analogous to our R. The arches they observe and analyse are sufficiently small that gravity is
negligible compared with the centripetal acceleration and, because they do not reach a steady
state, they do not analyse the dimensions of the arches. By contrast, in our chain fountain, the
beaker imposes the existence of a rising and a falling leg so rather than thinking about initiation
we have focused on predicting the height of the steady state, for which gravity is critical. We
suspect that, in their embryonic form, arch and the fountain are rather different structures. In the
traditional view, when a chain is picked up, half the work done by the pick-up force is associated
with motion of the chain transverse to the pick-up direction. The fountain depends on reducing
this effect via an anomalous reaction force parallel to the chain–pick-up direction which augments
the velocity of the chain in the pick-up direction and reduces transverse motion, whereas the arch
requires a ‘rectification’ force perpendicular to the pick-up direction which organizes and augments
the transverse motion. However, it is likely that if the chain-arch gets big enough its pick-up
direction will become effectively vertical and the two structures will converge to a common
catenary. In any event, Hanna and Santangelo’s work illustrates, as ours does, that the apparently
simple process of pulling on the end of a pile of chain is far from understood and may yet yield
further surprises.

Our central result—that when a chain is picked up from a pile the picking-up force is
augmented by a reaction from the pile—may have consequences far beyond the chain fountain we
study here. It will increase the rate at which any pile of chain is deployed when a force is applied
at its end, and it will increase the energetic efficiency of the deployment process, which may have
consequences for industrial design in areas as disparate as textiles and shipping. In areas such
as space engineering (e.g. satellite tethers and space elevators) where efficiency is central, it may
be worth maximizing the effect so that chain can be deployed with minimal expenditure of force
and energy.
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