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A mathematical model is described to analyse the
hydrodynamic behaviour of a wave energy farm
consisting of oscillating wave surge converters in
oblique waves. The method is a highly efficient semi-
analytical approach based on the linear potential
flow theory. Wave farms with a large number of
such devices are studied for various configurations.
For an inline configuration with normally incident
waves, the occurrence of a near-resonant behaviour,
already known for small arrays, is confirmed. A
strong wave focusing effect is observed in special
configurations comprising a large number of devices.
The effects of the arrangement and of the distance
of separation between the flaps are also studied
extensively. In general, the flaps lying on the front
of the wave farm are found to exhibit an enhanced
performance behaviour in average, owing to the
mutual interactions arising within the array. A
random sea analysis shows that a slightly staggered
arrangement can be an ideal layout for a wave farm
of this device. The hydrodynamics of two flaps that
oscillate back to back is also discussed.

1. Introduction
Wave farms comprising a large number of wave energy
converters (WECs) are planned at sites which have
already been identified for the purpose of energy
extraction (e.g. Lewis wave project, see [1]). The
arrangement of the devices in such a farm can follow
several possible configurations. This study analyses the
interaction of waves with an array of oscillating wave
surge converters (OWSCs) and the performance of such
systems. The OWSC considered here is a bottom hinged
flap-type WEC which extracts energy by virtue of its
pitching motion and resembles the Oyster developed by
Aquamarine Power.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. A computer-generated three-dimensional graphical view of a portion of a wave farm comprising five OWSCs. (Online
version in colour.)

Wave power absorption in an array has already been studied in the literature, starting
with the seminal work of Budal [2]. However, the majority of the investigations deal with
the hydrodynamics of point absorbers [3–5], which is based on the assumption that the body
dimensions are much smaller than the wavelength of the incident wave field. Recent studies
have shown that for OWSCs such as Oyster, the point absorber limit is no longer applicable
and hence better and more accurate modelling of the device needs to be undertaken [6]. Some
recent investigations also dealt with a detailed analysis of multiple WECs, but most of them did
not go beyond three or four of such devices [7–10]. Indeed, in the literature, there have been
very few attempts to understand the dynamics of large finite arrays. The analytical modelling
of large and complex systems becomes difficult, whereas numerical approaches, on the other
hand, are computationally expensive and performing such an analysis experimentally is quite
challenging. Recently, Borgarino et al. [11] used a fast multi-pole accelerated linearized boundary
element method to study large arrays of sparsely distributed generic WECs in deep water.
However, despite the recent effort of Renzi et al. [12], who devised a new method to investigate
the hydrodynamics of a small inline array of OWSCs, to date, there is still a need for an unifying
theory of large arrays of OWSCs in any configuration and in oblique waves. The analysis in this
paper extends the semi-analytical work of Renzi et al. [12] to investigate a large farm of OWSCs
in any configuration under oblique incident waves.

A mathematical model is developed here within the framework of linear potential theory. The
theory allows the analysis of arbitrary configurations of an array of OWSCs, the only constraint
being that all the converters have parallel pitching axes (figure 1). The problem is formulated as
a boundary value problem for the radiation and scattering potentials. The use of Green’s integral
theorem yields hypersingular integrals (HIs) in terms of the jump in potential across the sides of
each flap, which are solved using a numerical approach in terms of the Chebyshev polynomial
of the second kind. The derivation of the mathematical model is quite general: one can solve for
the unknown jump in potential across each flap for arbitrary configurations of the array. A wave
farm consisting of various layouts of a finite array of OWSCs is then studied considering complete
hydrodynamic interaction among all the devices.

The first theoretical model based on HIs was developed for an OWSC in a channel [13] and
was then extended to study the hydrodynamics of an infinite array of WECs [14], a single device
in the open ocean [15] and a finite array of inline converters [12]. Recently, the same method
was also used to analyse the hydrodynamics of a flap-type device near a straight coast [16].
Following the same approach, in this study, we develop a mathematical model to investigate the
hydrodynamic behaviour for the most generalized case consisting of a large number of OWSCs
in any configuration with oblique wave incidence.

The generalized mathematical model is derived in the first part of the paper (§§2 and 3). In
§4, the effect of the separation distance is studied in detail using three flaps. This is followed
by an analysis of both a wave farm comprising 13 flaps in various possible arrangements
and a wave farm of 40 inline flaps. Finally, the semi-analytical model is used to study the
hydrodynamics of two devices located back to back—a configuration which has intrigued many
(see [17]).
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2. Mathematical model

(a) Governing equations
A wave farm of M OWSCs is considered to be located in an ocean of constant water depth h′.
Waves are incident from the right making an angle ψ with the x′-axis as shown in figure 2. The
origin is located on the mean free surface with y′ the pitching axis of the flaps and z′-directed
upwards. Primes in this mathematical model are used to denote the physical variables. With
the assumption of irrotational flow and inviscid, incompressible fluid, the velocity potential Φ ′
satisfies the Laplace equation

∇′2Φ ′ = 0, (2.1)

in the fluid domain, where ∇′f ′ = (f ′
,x′ , f ′

,y′ , f ′
,z′ ) is the nabla operator; subscripts with commas

denote differentiation with respect to relevant variables. The linearized kinematic–dynamic
boundary condition on the free surface gives

Φ ′
,t′t′ + gΦ ′

,z′ = 0, z′ = 0, (2.2)

where g is the acceleration owing to gravity, whereas the no-flux boundary condition at the sea
bed yields

Φ ′
,z′ = 0, z′ = −h′. (2.3)

Each device is equipped with an oscillating flap hinged to a rigid foundation at a distance c′ above
the seabed (see again figure 2). The WECs are modelled using a thin-rigid plate approximation
(see [18]), and the kinematic boundary condition on their surface is then expressed as

Φ ′
,x′ = −θm,t′ (z′ + h′ − c′

β )H(z′ + h′ − c′
β ), x′ = x′

m ± ε′, ε′ → 0,

yA′
m < y′ < yB′

m , m = 1, . . . , M, (2.4)

where x′
m is the x′ coordinate of the centre of the mth flap, yA′

m and yB′
m are the y′ coordinates

corresponding to the two edges of the device and H is the Heaviside step function.
Like in previous work [6,12–16], a non-dimensional system of variables is chosen as

(x, y, z, r) = (x′, y′, z′, r′)
w′ , t =

√
g
w′ t′, Φ = Φ ′√

gw′A′
I
, θm =

(
w′

A′
I

)
θ ′

m, (2.5)

where w′ is the length scale of the system (e.g. the width of the largest flap), and A′
I is the

amplitude of the incident wave. Assuming the oscillation of the flaps to be simple harmonic in
nature, the time dependence of the variables can be separated out as

θm = Re{Θm exp−iωt}, Φ = Re{φ(x, y, z) exp−iωt}, (2.6)

where ω=ω′√w′/g and Θm are respectively, the angular frequency and amplitude of oscillation
of the mth flap, whereas φ(x, y, z) is the complex spatial velocity potential. The spatial potential
can, in turn, be resolved into

φ = φS + φR

= φI + φD +
M∑
β=1

Vβφ(β), (2.7)

where

φI = − iAI

ω

cosh k(z + h)
cosh kh

exp−ikx cosψ+iky sinψ (2.8)

is the incident wave potential. In (2.7), φD is the diffracted wave potential, φ(β) is the unit radiation
potential induced by the motion of the βth flap, whereas the other flaps are held fixed and
Vβ = iωΘβ is the complex angular velocity of the moving flap. Also note, in (2.8), k is the solution
to the dispersion relation ω2 = k tanh kh. On substitution of the factorization (2.6) and (2.7) in
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Figure 2. Geometry of the physical model of a portion of an OWSC array: (a) top view; (b) cross section of themth flap shown
with the physical parameters. (Online version in colour.)

the governing equations (2.1)–(2.4), we obtain a boundary value problem in terms of the spatial
radiation and scattering potentials. These potentials satisfy the Laplace equation

∇2φ(β,D) = 0, (2.9)

where the notation φ(β,D) denotes either potential, the linearized free-surface boundary condition

− ω2φ(β,D) + φ
(β,D)
,z = 0, z = 0, (2.10)

the no-flux boundary conditions at the sea bed

φ
(β,D)
,z = 0, z = −h, (2.11)

and the kinematic conditions on the lateral surfaces of the flaps

φ
(β)
,x = (z + h − cβ )H(z + h − cβ )δβm, x = xm ± ε, ε→ 0, yA

m ≤ y ≤ yB
m (2.12)

and

φD
,x = −φI

,x (2.13)

for β = 1, 2, . . . , M, δnm being the Kronecker delta. Finally, both φ(β) and φD are required to be
outgoing disturbances of the wave field [19]. The vertical dependence can now be isolated out of
the three-dimensional governing system (2.9)–(2.13) by using the separation (see [12,15,19]):

φ(β,D)(x, y, z) =
∞∑

n=0

ϕ
(β,D)
n (x, y)Zn(z), (2.14)

where

Zn(z) =
√

2 cosh κn(z + h)

(h + ω−2 sinh2 κnh)1/2
, n = 0, . . . , ∞, (2.15)

are the normalized vertical eigenmodes satisfying the orthogonality relation

∫ 0

−h
Zn(z)Zm(z) dz = δnm. (2.16)

In (2.15), κ0 = k and κn = ikn are the solutions of the dispersion relation

ω2 = k tanh kh, ω2 = −kn tanh knh, n = 1, 2, . . . , (2.17)

respectively.
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Using the decomposition (2.14) and the orthogonality relation, (2.16) yields a two-dimensional
governing system for ϕ(β,D)

n , where the Laplace equation (2.9) becomes the Helmholtz equation

(∇2 + κ2
n)

{
ϕ
β
n

ϕD
n

}
= 0, (2.18)

and the kinematic conditions on the flap (2.12) become{
ϕ
β
n,x

ϕD
n,x

}
=

{
fnβδβm

AIdm
n eiky sinψ

}
x = xm ± ε, ε→ 0, yA

m < y< yB
m, (2.19)

where

fnβ =
√

2[κn(h − cβ ) sinh(κnh) + cosh(κncβ ) − cosh(κnh))]

κ2
n(h + ω−2 sinh2(κnh))1/2

(2.20)

and

dm
n = k cosψ(h + ω−2 sinh2 kh)1/2

√
2ω cosh kh

[cos(kxm cosψ) − i sin(kxm cosψ)]δ0n (2.21)

are integration constants depending on the geometry of the system. Finally, the ϕ(β,D)
n must be

outgoing disturbances for r → ∞. The boundary value problem (2.18)–(2.19) is solved with the
application of Green’s integral theorem, similar to the procedure followed in Renzi & Dias [13].
The formulation yields HIs which are solved using the Chebyshev polynomials of the second
kind (see appendix A for details). Finally, the solution for the βth mode radiation potential is
obtained as

φ(β)(x, y, z) = − i
8

+∞∑
n=0

κnxZn(z)
M∑

m=1

wm

P∑
p=0

a(β)
pnm

∫ 1

−1
(1 − u2)1/2Up(u)

×
H(1)

1 (κn

√
(x − xm)2 + (y − (uwm + 2yC

m)/2)2)√
(x − xm)2 + (y − (uwm + 2yC

m)/2)2
du, (2.22)

where wm = yB
m − yA

m is the non-dimensional width of the mth flap, Up is the Chebyshev

polynomial of the second kind and order p, p = 0, 1, . . . , P ∈ N, H(1)
1 is the Hankel function of the

first kind and first order, yC
m the y-coordinate of the centre of flap m, whereas a(β)

pnm are the complex
solutions obtained using a numerical collocation scheme (see appendix A). The solution to the
spatial diffraction potential is expressed as

φD(x, y, z) = − i
8

AIkxZ0(z)
M∑

m=1

wm

P∑
p=0

bp0m

∫ 1

−1
(1 − u2)1/2Up(u)

×
H(1)

1 (k
√

(x − xm)2 + (y − (uwm + 2yC
m)/2)2)√

(x − xm)2 + (y − (uwm + 2yC
m)/2)2

du, (2.23)

where the bp0m are the complex solutions of a system of equations, again solved numerically. Note
that in φD (2.23) only the zeroth-order vertical mode is present, the flaps being walled structures
in the scattering problem (i.e ϕD

n = 0 for n> 0). Using the above expressions (2.22) and (2.23), the
velocity potential is known in the whole fluid domain. It gives access to the flaps’ hydrodynamic
coefficients, which enables solving the equation of motion for the flaps.

(b) Hydrodynamic parameters
The solution for the velocity potential is then used to solve the equation of motion of each
individual flap in the frequency domain. Suppose for the αth flap, Iα = I′α/(ρw

′5
α ) is the second
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moment of inertia and Cα = C′
α/(ρgw

′4
α ) is the coefficient of the flap restoring buoyancy torque.

Then, its non-dimensional equation of motion can be expressed as shown in Renzi et al. [12]

[−ω2(Iα + μαα) + Cα − iω(ναα + ν
pto
α )]Θα −

M∑
β=1
β 	=α

[ω2μβα + iωνβα]Θβ = Fα . (2.24)

In the latter,

μβα = πwα
4

Re

{ ∞∑
n=0

fnαa(β)
0nα

}
(2.25)

is the added moment of inertia,

νβα = πωwα
4

Im

{ ∞∑
n=0

fnαa(β)
0nα

}
(2.26)

is the radiation damping, and

Fα = −πωwα
4

iAIb00α f0α (2.27)

is the excitation torque (see Renzi et al. [12] for details). Note that in (2.25)–(2.26), the a(β)
0nα are

linked to the jump in potential across each flap (see (A 9)), which, in turn, depends on the

geometry of the whole system. In addition, in (2.24), νpto
α = ν

pto′
α /(ρw

′5
α

√
g/w′

α) is the power take-
off (PTO) damping coefficient of the αth flap and, following [7], is set equal to the optimal PTO
damping for the same OWSC isolated in the open ocean

ν
pto
α =

√
[Cα − (Iα + μ

open
α )ω2)]2

ω2 + (νopen
α )2, (2.28)

where μopen
α and νopen

α are respectively the added moment of inertia and radiation damping of
the αth OWSC isolated in the open ocean. According to the theory of damped oscillating systems
(see [20]), the average extracted power by the wave farm over a wave period is

P = 1
2
ω2

M∑
i=1

ν
pto
i |Θi|2. (2.29)

The performance of the system is measured with the interaction factor q, defined as the ratio of
total power captured by an array of M flaps to the power captured by an isolated WEC of the
same type multiplied by M

q = P
MPsingle

. (2.30)

A value of q> 1 implies that there is a gain in the net power output from an array because
of constructive interaction among the flaps. On the other hand, q< 1 indicates that mutual
interactions have a cumulative destructive influence on the array efficiency. However, the
interaction factor q (2.30) does not quantify the performance of individual array elements. In order
to understand the performance dynamics of each WEC in an array, Babarit [7] defined a term qmod

m
given by

qmod
m = Pm − Psingle

max(Psingle)
, m = 1, 2, . . . , M, (2.31)

where Pm is the power captured by the mth flap while max(Psingle) is the maximum value of
Psingle in the considered range of incident wave periods. The parameter qmod

m represents the array-
induced performance modification of each individual WEC, with qmod

m > 0 implying a beneficial
influence and qmod

m < 0 a negative interaction effect. The two terms q and qmod
m together can

reasonably describe the global- and single-scale performance behaviour of an array configuration.
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3. Algorithm implementation and computational cost
An algorithm based on the mathematical model described here has been implemented through
a code written in MATHEMATICA 8. The algorithm and the code have been made as general
as possible and can handle a large number of flaps in any staggered configuration. The code
requires no modification if the number of flaps or their configuration/positions are changed.
Only the coordinates of the flap centres need to be changed. The other required inputs to the
code are the flap width, distance from the sea bottom to the hinge, water depth, incident wave
amplitude, range and number of incident wave periods, angle of oblique wave incidence, moment
of inertia and buoyancy torque of the flap and total number of vertical eigenmodes, order of
Chebyshev polynomials and terms in the remainder of the Hankel function (see (A 8)). A relative
error of O(10−3) is obtained with the first three vertical eigenmodes and sixth-order Chebyshev
polynomials (P = 6). From a computational point of view, the semi-analytical approach described
here is extremely efficient compared with a full numerical approach. The latter has been used
in Renzi et al. [12] to model a three-flap inline and a two-flap staggered configurations. The
computational expense associated with the full numerical approach was on an average 1 h for
a single wave period evaluation performed on a computer equipped with an i7 2.67 GHz CPU
and 12 GB RAM. Computations with the semi-analytical model presented here were performed
with an i7 3.40 GHz CPU and 16 GB RAM-equipped computer. For the assessment of a system of
13 flaps, only 6 min are required in average for each wave period.

4. Results
The computations are performed for several configurations of OWSCs, each one closely
resembling the Oyster800 WEC developed by Aquamarine Power. The parameters of the system
are reported in table 1.

In the following, we validate the computational model with available theoretical and
numerical results. Then, we discuss the interactions arising in a simple three-flap cluster and
further show the potential of the model in handling more complex and populated arrays.

(a) Validation
The solution obtained for an inline array (xm = 0, m = 1, 2, . . . , M) of flaps and normal incidence
(ψ = 0◦) is exactly the same as shown in Renzi et al. [12], and consequently the same results are
obtained for the two-flap inline and three-flap inline cases as presented in Renzi et al. [12]. For
staggered configurations, results for only two flaps are available in the literature and have been
obtained with a numerical tool [12]. Figure 3 shows the variation of the excitation torque versus
time period of the incident wave for the two-flap staggered case of Renzi et al. [12]. A fairly
consistent agreement is observed in the results obtained by the current model and the numerical
approach of Renzi et al. [12]. Small discrepancies can be observed at around 7 s which are likely
due to the thickness-induced effect. The latter is modelled in the numerical model, but not in the
semi-analytical solution presented here (see [12] for details).

(b) Three-flap cluster
In order to understand the effects of the mutual interactions arising in a wave farm, we
first consider a basic array cluster comprising only three flaps, and we focus our attention
on the performance of the flap positioned centrally among them. This central flap in a way
represents an OWSC located well within an array, where the hydrodynamic influences of only
its two neighbouring devices are dominant. We consider both symmetrical and non-symmetrical
configurations of the three flaps with essentially uniform spacing between them in normally
incident waves.
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the x′-axis, whereas (b) represents a non-symmetrical configuration. (Online version in colour.)

Table 1. Dimension of the physical variables.

A′
I (m) w′ (m) h′ (m) c′ (m)
0.3 26 13 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us first consider the case of the symmetrical configuration shown in figure 4a. Here, the
distance d′, measured from the central flap, is positive in the positive x′-direction. Therefore,
d′ > 0 m represents the case when the central flap is located behind the two lateral flaps, whereas
d′ < 0 m indicates otherwise. Figure 5 plots the qmod

2 of the central OWSC for various distances
of separation. Each of the subplots shows the behaviour for a particular value of the lateral
distance b′ while varying d′. It can be observed that d′ > 0 m is associated with a strong destructive
influence on the central flap’s performance across the entire operating range of periods. On
the other hand, for d′ < 0 m, positive interaction effects dominate and significantly enhance the
performance of the central flap, suggesting that an OWSC will have better power absorption
characteristics when located at the front of the cluster. The most important thing to note is that for
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(Online version in colour.)

the situations considered here, the qualitative behaviour of the qmod variation is determined by d′,
whereas b′ primarily dictates the extent of the peaks (see again figure 5). In general, as the distance
b′ is increased, there is a shift in the qmod variations towards higher periods, accompanied by a
reduction in the magnitude of the peaks, which means a decrease in the interaction among the
flaps. It can be inferred that as b′ is further increased, there would be a larger number of local
maxima and minima of reduced magnitudes and so on average, there would be no distinctive
positive or negative interaction effect on the device performance for any value of d′.

Now, we consider the case where the layout of the flaps with respect to the centreline of
the middle OWSC is non-symmetrical, as shown in figure 4b. The notable difference with the
previous arrangement is that the pitching axes of the extreme flaps are now separated from that
of the central flap in opposite directions. The qmod

2 variation of the central flap for the various
cases is plotted in figure 6. Almost ubiquitously for the range of distances considered, such a
configuration has a negative influence on the WECs performance. This is likely due to the opposite
interaction effects on the central OWSC by the two lateral flaps.
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(c) Wave farm of 13 oscillating wave surge converters
A wave farm consisting of 13 flaps in various configurations is shown in figure 7. Typically, even
larger arrays could be studied using the same computational infrastructure mentioned previously
within a reasonable time. The spacing between the flaps is chosen similar to the one planned for
the proposed wave farm at the Isle of Lewis in Scotland [1]. For the purpose of identifying each
individual converter, the flaps are numbered in an increasing order from right to left of the array
with the OWSC located on the extreme right considered as flap 1. The distance between the edges
of the neighbouring flaps is 20 m in the x′-direction for all the configurations shown in figure 7,
whereas the pitching axes of the neighbouring flaps in the staggered configurations are separated
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Figure 7. Five possible layouts of a 13 OWSC wave farm are shown here. Themagnitude of the spacings between neighbouring
flaps in all the cases is fixed at 20 m in the y-direction and 15 m in the x-direction. (Online version in colour.)

by a distance of 15 m. The wave farms considered in the analysis are symmetrical about the central
flap (flap 7), so for normal wave incidence the hydrodynamic behaviour is symmetric with respect
to the x′-axis passing through the centre of the central flap.
Inline: the inline case corresponds to the configuration in which the pitching axes of all the
flaps are orientated along the same x′-coordinate. As first described by Renzi et al. [12], a near-
resonant behaviour is observed in this case which is similar to the resonance of an infinite
array of inline OWSCs [14] or a single OWSC in an open channel [13] (figure 8a). At the near-
resonant period, the performance of every individual OWSC is higher than in the isolated
case, and qmod has a peak for all the flaps. However, such a behaviour is also accompanied by
destructive influences at higher periods. Among all the flaps, the outermost OWSC has a slightly
distinguishable behaviour from the others. This is due to the fact that while all the other OWSCs
have neighbouring flaps on both sides which generate the maximum influence, the outermost
flap only experiences the hydrodynamic influence of the converters located on one side. Let us
now consider a case of oblique wave incidence on inline OWSCs. As expected, the behaviour of
the wave farm is no longer symmetrical about its innermost flap. Figure 9a,b shows the qmod of
all the 13 flaps when ψ = 30◦. A similar near-resonant behaviour is observed in this case as well.
However, the strongest near-resonant behaviour occurs for flap 1, and the magnitude of the peaks
reduces as one moves towards the other end of the array, with flap 13 showing a distinctively
different behaviour.
S1: in such a configuration, the OWSCs are placed in a zigzag manner with the array comprising
two rows of devices. The flaps located in the same row have similar hydrodynamic behaviour,
as seen in figure 8b . Flaps 3, 5 and 7, which are positioned in the front, have almost the same
qmod variation and similar are the behaviours of flaps 2, 4 and 6. However, the performance
characteristics of the flaps in the two rows are in striking contrast, with the maxima in qmod of
the OWSCs in the front row corresponding to the minima of the OWSCs in the back row and
vice versa. This happens, because a flap in the front row experiences the maximum constructive
interaction, as already anticipated in the cluster analysis of §4b. Figure 10 plots the response
amplitude operator (RAO) of the free surface elevation (|ζ ′/A′

I|) for an incident wave period of
5 s in the region surrounding the wave farm. There is hardly any notable change in the wave
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the OWSC located in the extreme right of the array shown in figure 7, whereas flap 7 is the central flap. (Online version in colour.)

field in front of the array, but, immediately, behind the first row, there is a reduction in the wave
elevation, meaning a less energetic wave field available for extraction by the second row. At the
back of the second row, the energy reduction is stronger, but limited in extent to the first 15 m. At
further distance, the reduction is as significant as in the front of the first row.
S2: here the devices are again placed in a zigzag distribution, but now there are three rows in
this configuration. Flaps 3 and 7 are located in front of the array and experience a beneficial
influence owing to constructive interactions leading to relatively high values of qmod (figure 8c).
One can again note the similarity in the behaviour of the OWSCs in the second row (flaps 2, 4
and 6). Finally, flap 5, the only non-external flap to be located on the last row, has a predominantly
negative qmod factor. The behaviour is indeed similar to that obtained from the corresponding
configurations of the three-flap cluster of §4b.
S3: the layout of this array resembles an inverted ‘V’ shape, pointing away from the coast.
Figure 8d shows the qmod variation of the flaps in such a configuration. The most striking
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behaviour is of the foremost WEC (flap 7). Indeed, one could have expected it to have a
positive qmod factor based on the behaviour observed in the cluster model of §4b. However, the
magnification of the qmod factor, in this case, is further enhanced by what we believe to be a strong
focusing effect. In the S3 configuration (see again figure 7), all the flaps behind the central one
reflect back some amount of incident wave energy. As a consequence, more energy is available
for extraction by the foremost device (flap 7), resulting in the peak of the relevant qmod in figure 8d.
A further insight into such dynamics is offered by figure 11, which shows the excitation torque
on the flaps in the S3 configuration. The variation of the excitation torque is similar to that of
the qmod factor of figure 8d, and one can note a sharp increase in |F′| for flap 7 at the same peak
period (T′ ∼ 7.2 s). Such a behaviour again corroborates the well-known fact that the dynamics of
the OWSCs such as Oyster is primarily torque-driven (see [6,13,15]).
S4: here again, the outermost flaps, which are located in the front, record the highest peak in the
qmod factor (figure 8e). However, although the configuration mirrors to the previous one, there is
no such equivalent constructive focusing effect on the central flap (flap 7).

An overview of the general behaviours of all the systems is provided in figure 12. Here, the
variation of the global performance parameter q (2.30) is plotted against the period of the incident
wave. Overall, the strongest constructive interaction is achieved in the inline system, whereas the
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staggered systems S1 and S2 show the least constructive interference between the flaps, mainly
owing to the poor performance of the back row because of the sheltering effect of the front row
(figure 10). This confirms the earlier findings of Renzi et al. [12] for a smaller system. Finally,
the configurations S3 and S4, for which the net power output is the same, show a smaller peak
than the inline configuration, but an overall better performance according to the q indicator.
It is worth mentioning that our analysis is based purely on the hydrodynamic performance
of the system. Other aspects (environmental impact, site bathymetry, etc.) could of course
orient the designer towards a less effective configuration from the hydrodynamic viewpoint.
Nevertheless, such a hydrodynamic analysis is a first step towards the effective design of such a
costly system.

(d) Forty flaps inline
The proposed 40 MW wave farm off the northwest coast of Lewis, Scotland, is expected to have a
deployment of around 40–50 Oyster devices on an approximate 3.2 km stretch of coast. In order
to check the reproducibility of the results obtained from the small wave farm cases in such large
configurations, a simulation of 40 OWSCs in a simple inline configuration is performed. The
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Table 2. q-Factor for various layouts of a 13 OWSC wave farm in random seas.

layout q

inline 0.908
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S1 0.982
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S2 0.972
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S3 0.968
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S4 0.968
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

general geometry is considered to be the same as in the 13 flap configuration. In figure 12, the
variation of the q factor for the 40 flap configuration is plotted. The behaviour is indeed similar to
that of the 13 flap inline case, and the near-resonant behaviour is again confirmed with a slightly
larger spike tending towards that of an infinite number of OWSCs (see again [12,14]). It can be
reasonably inferred that the general behaviour in other configurations would be similar to that in
the smaller wave farm case with sharper spikes and troughs.

(e) Random seas
A random sea analysis is performed in this section for the most probable sea-state at the Isle of
Lewis with the significant wave period T1/3 = 8.24 s and the significant wave height H1/3 = 1 m
(obtained through personal communication with Aquamarine Power 2013) with normal wave
incidence. The standard Bretschneider spectrum, described in Goda [21], is used to model the
wave climate at the location. Computations are performed for five possible layouts of a 13 OWSC
wave farm as shown in figure 7. Table 2 shows the q-factor for the various array configurations.
The q-factor for all the layouts are found to be less than 1, which indicates that the effect of the
interactions on the net power output from the array in random seas are destructive in nature
for the spectrum considered. The inline configuration which records the highest peak in the
q-factor in monochromatic seas (figure 12) has the lowest values in irregular waves, whereas S1,
the least staggered configuration of all, achieves the best performance in random seas. Note, S1
has the smallest spikes in q, but, at the same time, the destructive influences on its cumulative
performance are the least as well (see again figure 12). The other staggered layouts S2, S3 and
S4 have lower values of q than that of S1. As already noted, the net power output from the S3
and S4 configurations are the same, which consequently results in identical values of the q-factor
in random seas as well. It is worth recognizing that the performance in random seas is strongly
dependent on the description of the incident wave spectrum. For the sea-state considered in this
analysis, its peak period Tp = 8.65 s (note: Tp = 1.05T1/3, see [21]), did not coincide with any peak
of the interaction factor q. Although it is not a rule of thumb, such a co-occurrence can help at
attaining q-factors greater than 1. For example, a q-factor of 1.027 is observed for the inline layout
in a sea-state with Tp = 5.7 s and H1/3 = 1 m, which also concurred with the peak in the interaction
factor. In general, the peak period of the spectrum can vary significantly throughout the year
because of the seasonal variations and therefore for practical purposes, S1 would be the ideal
layout.

(f) Two flaps back to back
Two flaps with their centres along the same y′-coordinate are studied here (figure 13). It is
expected that such a configuration would result in strong hydrodynamic interaction between
the two devices. Srokosz & Evans [17] were the first to analyse the behaviour of two top hinged
independently oscillating rolling plates in deep water as a WEC. The novel concept motivated
a few other studies [22], where one of the major drawbacks of such a system was identified to
be its strong directional sensitivity to wave incidence and the concept was thereafter shelved.
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Figure 13. Geometry of the physical model of two back to back OWSCs: (a) side view; (b) top view. The distance of separation
between the flaps is denoted by d′ in this case. (Online version in colour.)
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Surprisingly, the idea was not pursued in shallow waters where the waves are predominantly
directional. In this study, we are going to explore whether it is wise to place two OWSCs back
to back.

Figure 14 plots the behaviour of the excitation torque (|F′|), radiation damping (ν′), added
inertia (μ′) and the performance indicator qmod versus the non-dimensional parameter kd for
d′ = 50 m. The qualitative variation of the hydrodynamic parameters of the front flap resembles
that observed in the case of an OWSC in front of a straight coast [16]. In the latter, periodic
occurrences of extremes are observed in the variation of the excitation torque, with the minima
occurring at integer values of kd/π . In addition, sharp spikes are observed in the variation of the
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radiation parameters at values a little less than kd = (m + 1
2 )π , m = 1, 2, . . .. In the case of the two

flaps analysed here, the hydrodynamic behaviour of the front OWSC is similar to that of a flap in
front of a straight coast, with, however, reduced peaks and a shift where the extremes occur.

As far as the performance of the devices is concerned, the average value of qmod of flap 1
is higher than that of flap 2 (figure 14b). The constructive interference effects on flap 1 are very
strong at kd ≈ 5, where qmod almost reaches a value of 0.5. Flap 2 (back OWSC) always captures
less power than a single isolated OWSC, which means that the interaction effects are always
destructive on its performance. The primary reason for such a behaviour is that the back flap
lies in the hind side of the front flap where the wave energy is reduced. Figure 15 shows the
variation of q for various values of the distance d′. For d′ = 25 m, the destructive interaction effects
are quite significant and q ≈ 0.5 at an incident wave period of about 6 s. This means that the
total power captured by the two devices combined at that frequency is equivalent to the energy
extracted by an isolated single device. As the distance d′ is increased, the occurrence of the humps
in the variation of q increases, but the magnitude of such deviations also reduces. The most
important thing to note is that the constructive interference effects are much weaker compared
with destructive influences, and on an average, the two OWSCs in such a configuration capture
less power than two isolated WECs.

(g) Two wave farms
In reality, an ideal wave energy site may encourage the deployment of two consecutive wave
farms for energy harvesting. It is important to understand the dynamics of the system in such
cases especially with one of the wave farm lying in the energy shadow of the other. A simplified
case of two inline wave farm configurations, each comprising 13 flaps is considered in normal
wave incidence (figure 16). The analysis is performed in constant water depth to understand the
dominant interaction effects between the systems, although, in reality, variations in depth are
expected to modify the behaviour slightly. The term qfarm is used to understand the effect of the
interaction on each of the wave farms and is defined as

qfarm = Pfarm

Pfarm isolated
, (4.1)

where Pfarm is the total power captured by a particular wave farm, whereas Pfarm isolated is that
by the same farm in an isolated environment. qfarm > 1 would mean that the presence of the other
farm has a net beneficial influence on power absorption characteristics of the particular wave farm
considered, whereas qfarm < 1 indicates otherwise. Figure 17 plots the variation of qfarm versus the
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incident wave period of the two wave farms for various distances of separation. The oscillatory
behaviour of the qfarm factor is similar to that of the q factor observed in the two back-to-back
OWSCs case (figure 15), with a higher number of such oscillations occurring for larger distances
of separation. For the range of distances considered, the qfarm factor of wave farm 1 is always less
than 1, which indicates that such configurations will tend to have a detrimental influence on the
farm located nearer to the shore. However, a steady upward shift in the qfarm factor of wave farm
1 is observed as the distance is increased, which can be explained owing to the energy recovery
in the rear side of wave farm 2 (see [7]). The rate of energy recovery is in fact quite slow and even
for a distance of 2000 m, the qfarm factor is still below 1. On the other hand, wave farm 2 has both
detrimental and favourable interference effects. However, the magnitude of the oscillations in its
qfarm factor is much higher than that in wave farm 1. It is interesting that the bandwidths of the
oscillations are almost the same for the distances considered.

5. Conclusion
A mathematical model based on the linear potential flow theory has been used to analyse the
hydrodynamic interaction between multiple flap-type WECs in a wave farm. The semi-analytical
model can efficiently solve a reasonably sized OWSC wave farm which otherwise is difficult to
evaluate with a complete numerical approach. It is shown that the dynamics of each individual
OWSC in the wave farms considered in the analysis strongly depends on its location in the farm,
the wave frequency and the angle of oblique wave incidence. As the distance between the flaps
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increases, the mutual hydrodynamic interaction between them reduces and the behaviour of the
converters tends towards that of an isolated device. However, from an economic perspective, one
would want to maximize the number of devices at a particular wave farm location to extract more
power. This is important for near shore devices such as OWSCs as the space would be strictly
limited unlike for offshore converters.

Wave absorption by an array of 13 OWSCs is studied for some of its possible layouts. For
an inline configuration with normal incidence, a near resonant phenomenon is observed which
becomes stronger as the number of flaps is increased. However, for oblique wave incidence,
there is a shift in the frequency of occurrence of this phenomenon with a slight increase in the
resonant bandwidth associated with it. In a particular configuration of the large array (S3), a
large enhancement in the performance of the front-most flap is observed. Such a behaviour is
attributed to a sharp increase in the excitation torque owing to the focusing of waves by the other
devices in the array. In general, the converters which are located in front of the array experience
a notable positive interaction effect leading to a gain in their power capture. Such a favourable
behaviour in the performance of the foremost devices of the array is also reported in the recent
study of Borgarino et al. [11]. An irregular wave analysis for the most probable sea at the Isle
of Lewis reveals that S1—the least staggered configuration—is a suitable layout for an OWSC
wave farm.

In the case of two back-to-back OWSCs located close to each other, the effect on the
performance of the back flap is found to be detrimental across its entire operating range, whereas
the front OWSC experiences regions of both positive and negative influences. And when two
such flaps are considered as one system, the destructive interference effects are found to be
more important than the constructive influences. Therefore, such a system of two OWSCs is
not recommended in reality. In addition, it is shown that a system of two consecutive wave
farms has, in general, a negative interaction effect on the net performance of the wave farm
located downstream.

In a practical wave farm design however, the layout of an array configuration could be
constrained by bathymetry variations which would affect the optimization process. Although no
particular layout could be suggested which would lead to a gain in net wave farm energy output
across the entire operating range of the device, because the constructive interference effects are
usually accompanied by destructive also influences, the study can help understand what sort of
variability in the performance of individual OWSCs one can expect.
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Appendix A. Semi-analytical solution
The procedure to obtain the solution to the two-dimensional spatial diffraction and radiation
potential is described here. Consider the two-dimensional Green’s function

Gn(x, y; ξ , η) = 1
4i

H(1)
0 (κn

√
(x − ξ )2 + (y − η)2), (A 1)

which satisfies the system of equations

(∇2 + κ2
n)Gn = 0, Gn = 1

2π
ln r as r → 0, (A 2)

where r =
√

(x − ξ )2 + (y − η)2. Applying Green’s integral theorem to ϕn and Gn for the whole
fluid domain yields

ϕn(x, y) = − i
4

M∑
m=1

∫ yB
m

yA
m

�ϕnmG(0)
n,ξ

∣∣∣∣∣
ξ=xm

dη, (A 3)
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where �ϕnm = ϕn(xm − ε, y) − ϕn(xm + ε, y) denotes the modal potential difference across the two
sides of flap m. Applying the two-dimensional spatial potential on the kinematic boundary
conditions on the flaps, gives (see [12])

∫ yB
α

yA
α

×
{
�ϕ

(β)
nα

�ϕD
nα

}
H(1)

1 (κn|y − η|)
|y − η| κn dη +

M∑
γ=1
γ 	=α

∫ yB
γ

yA
γ

{
�ϕ

(β)
nγ

�ϕD
nγ

}

× −κn

(xα − xγ )2 + (y − η)2

⎡
⎣κn(xα − xγ )2

⎧⎨
⎩H(1)

2 (κn

√
(xα − xγ )2 + (y − η)2)

−
H(1)

1 (κn

√
(xα − xγ )2 + (y − η)2)

κn

√
(xα − xγ )2 + (y − η)2

⎫⎬
⎭ − (y − η)2√

(xα − xγ )2 + (y − η)2

× H(1)
1 (κn

√
(xα − xγ )2 + (y − η)2)

⎤
⎦ dη= 4i

{
fnβδαβ

AId
(α)
n eiky sinψ

}
, (A 4)

where
∫× is a Hadamard finite-part integral. Let yC

m = (yA
m + yB

m)/2 denote the y coordinate of the
centre of flap m, mε[1, M]. Making the following change of variables

u = 2(η − yC
m)

wm
, vm = 2(y − yC

m)
wm

,

{
P(β)

nα (u)

Qnα(u)

}
=

{
�ϕ

(β)
nα

�ϕD
nα

}
, (A 5)

yields

∫ 1

−1
×

{
P(β)

nα (u)
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}
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1 ((κnwα/2)|vα − u|)
|vα − u| κn du +
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. (A 6)

Now

H(1)
1

(κn

2
wα |vα − u|

)
= 4

iπ
1

κnwα |vα − u| + Rn

(κn

2
wα |vα − u|

)
, (A 7)

where

Rn(z) = J1(z)
[

1 + 2i
π

(
ln

z
2

+ χ
)]

− i
π

⎡
⎣ z

2
+

+∞∑
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⎦ (A 8)

 on January 20, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


21

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140118

...................................................

is the remainder, J1 is the Bessel function of first kind and first order, and χ = 0.577215 . . . is the
Euler constant [13]. Expanding the unknown jumps in potential across the two sides of the flap as

{
P(β)

nm(u)

Qnm(u)

}
= (1 − u2)1/2

+∞∑
p=0

{
a(β)

pnm

AIbpnm

}
Up(u), (A 9)

where a(β)
pnm and bpnm are unknown complex coefficients to be determined and Up(u) is the

Chebyshev polynomial of second kind, finally gives

∞∑
p=0
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⎪⎪⎩
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}
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bpnγ

}
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n eik(vαwα/2+yC

α ) sinψ

}
(A 10)

where

Cpnα = −π (p + 1)Up(vα) + iπκnwα
4

×
∫ 1

−1
(1 − u2)1/2Up(u)

Rn((1/2)κn|vα − u|)
|vα − u| du, (A 11)

Dpnαγ = − iπκnwα
4
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⎦ du (A 12)

and

vα = cos(2q + 1)π
2P + 2

, q = 0, 1, 2, . . . , P. (A 13)

In the case of an inline array configuration, xα = xγ and the term Dpnαγ indeed reduces to

Dpnαγ = iπκnwαwγ
4

∫ 1

−1
(1 − u2)1/2Up(u)

× H(1)
1 ((κn/2)|vαwα + 2yC

α − 2yC
γ − uwγ |)

|vαwα + 2yC
α − 2yC

γ − uwγ | du, (A 14)

and correspond to the term (A 12) of Renzi et al. [12]. Further, generalizing it for normal incidence
reduces the system of equations (A 10) exactly to (A 10) of Renzi et al. [12].
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