Some new addition formulae for Weierstrass elliptic functions

J. Chris Eilbeck¹, Matthew England² and
Yoshihiro Ônishi³

¹Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
²Department of Computer Science, University of Bath, Bath BA2 7AY, UK
³Faculty of Sciences and Technology, Department of Mathematics, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan

We present new addition formulae for the Weierstrass functions associated with a general elliptic curve. We prove the structure of the formulae in \(n \)-variables and give the explicit addition formulae for the 2- and 3-variable cases. These new results were inspired by new addition formulae found in the case of an equianharmonic curve, which we can now observe as a specialization of the results here. The new formulae, and the techniques used to find them, also follow the recent work for the generalization of Weierstrass functions to curves of higher genus.

1. Introduction

This paper concerns new addition formulae for the Weierstrass functions associated with the general elliptic curve \(f(x, y) = 0 \) with

\[
f(x, y) = y^2 + (\mu_1 x + \mu_3)y - (x^3 + \mu_2 x^2 + \mu_4 x + \mu_6).
\]

We describe a new class of formulae in theorems 4.1 and 4.3 and derive explicit examples in theorems 5.1 and 6.1.

Our work follows both classical results for the Weierstrass elliptic curve and recent work for the equianharmonic case (as well as specialized higher genus curves). We summarize these results, respectively, in §1a,b before giving our inspiration and motivation in §1c.
(a) The Weierstrass elliptic curve

Consider the Weierstrass equation

$$\wp'(u)^2 = 4\wp(u)^3 - g_2\wp(u) - g_3,$$

(1.1)

where g_2 and g_3 are the elliptic invariants and $\wp(u) = -(d^2/du^2)\log \sigma(u)$, $\sigma(u)$ the famous functions of Weierstrass (e.g. [1, ch. 20]). There is an especially well-known addition formula (see, for instance, [1, p. 451])

$$-\frac{\sigma(u + v)\sigma(u - v)}{\sigma(u)^2\sigma(v)^2} = \wp(u) - \wp(v).$$

(1.2)

Also, for n variables $u^{(j)}$, $j = 1, \ldots, n$, it is known that

$$(-1)^{(n-1)(n-2)/2}\frac{\sigma(\sum_{j=1}^n u^{(j)})\prod_{i<j}\sigma(u^{(i)} - u^{(j)})}{\prod_i\sigma(u^{(i)})^n} = \frac{1}{\prod_j^{n-1} j!} \left| \begin{array}{cccc} 1 & \wp(u^{(1)}) & \wp'(u^{(1)}) & \cdots & \wp^{(n-2)}(u^{(1)}) \\ 1 & \wp(u^{(2)}) & \wp'(u^{(2)}) & \cdots & \wp^{(n-2)}(u^{(2)}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \wp(u^{(n)}) & \wp'(u^{(n)}) & \cdots & \wp^{(n-2)}(u^{(n)}) \end{array} \right|. \tag{1.3}$$

This and other addition formulae can be found in [1, p. 458], for example. These formulae are a reflection of the involution of the elliptic curve defined by (1.1),

$$\mathcal{E} : y^2 = x^3 - \frac{g_2}{4}x - \frac{g_3}{4}, \quad \left(y = \frac{1}{2} \wp'(u), \ x = \wp(u) \right). \tag{1.4}$$

(b) Specialized curves

The equianharmonic case is when the elliptic invariant $g_2 = 0$ (and g_3 is assumed non-zero). In this case, there is a three-term analogy of equation (1.2) which reflects the cyclic automorphism group of order 3. Let ζ be a primitive cube root of unity (without loss of generality, we may take $\zeta = (-1 + \sqrt{-3})/2$). Then the Weierstrass functions specialized to this case satisfy

$$-\frac{\sigma(u + v)\sigma(u + \zeta v)\sigma(u + \zeta^2 v)}{\sigma(u)^3\sigma(v)^3} = \frac{1}{2}(\wp'(u) + \wp'(v)). \tag{1.5}$$

This was derived recently as proposition 5.1 of [2].

The authors have derived similar formulae for specialized higher genus curves and functions. Generalizations of Weierstrass functions may be defined following the work of Klein (e.g. [3,4]) which satisfy formulae generalizing equations (1.1) and (1.2). In the case of trigonal curves, the authors found further addition formulae after making specializations of the curve parameters in analogy with the equianharmonic case. Results for genus 3 were given in theorem 10.1 of [5] and theorem 5.4 in [6] and for genus 4 in theorem 8 in [7].

(c) Aim and motivation

The aim of this paper is to introduce generalizations of (1.3) and (1.2), which are both beyond (1.5), and for the most general elliptic curve (2.1) rather than a specialized curve.

Our approach is inspired by the following observation. Let us take a map

$$\varphi : \mathcal{E} \to \mathbb{P}^1,$$

(1.6)

where \mathbb{P}^1 denotes the projective line. For technical reasons, we assume φ is a polynomial of x and y. We regard \mathcal{E} as a complex torus \mathbb{C}/Λ and φ as a function on \mathbb{C} with the set of periods Λ. Let u be a variable on \mathbb{C} and let us take the set of variable points $S = \varphi^{-1}(\varphi(u))$. If $\varphi = x$, then $S = \{u, -u\}$ and this choice gives rise to (1.2) and (1.3). If $\varphi = y$ and $\mu_1 = \mu_2 = \mu_3 = \mu_4 = 0$, then $S = \{u, \zeta, u, \zeta^2 u\}$ and this choice gives rise to (1.5), where ζ is a primitive cube root of unity. It is
natural to investigate the generalizations of these formulae for arbitrary \(\phi \), and this paper is a first attempt at this problem.

We define the objects we work with formally in §§2 and 3. Then, in §4, we describe the structure of a new class of addition formulae in \(n \) arbitrary variables, with explicit expressions derived for the cases \(n = 2 \) and \(3 \) in §§5 and 6, respectively. Finally, in §7 we describe some possibilities for extending these ideas.

Our personal interest in such formulae stems mostly from their beauty, but they may also have important applications. The classical theory of the elliptic functions has of course been widely applied (see, for example, [8,9] for details on applications to geometry, algebra, arithmetic, mechanics, statistics). The Weierstrass functions, in particular, give solutions to many systems, including the spherical pendulum, the spinning top and the Korteweg–de Vries (KdV) equation for water waves.

The addition formulae of the functions are algebraic analogues of the well-known addition law for points on the elliptic curve, fundamental to elliptic curve cryptography. The addition formulae can be particularly important in number theory (e.g. [10]). More recently, in [11], null geodesics in Schwarzschild space–time were described by the Weierstrass \(\wp \)-function and the addition formulae used to connect the values of radial distance at different points on the geodesic.

Also, the recent work on the generalization of these functions to higher genus curves has begun to find applications, including describing the double pendulum [12], solutions to systems in the Kadomtsev–Petviashvili (KP) hierarchy (e.g. [3,13]), reductions of the Benney equations (e.g. [14, 15]) and describing geodesics in black hole space–times (e.g. [16,17]).

2. Preliminaries

The reader is referred to [18] for more details of the material in this section. Define

\[
 f(x, y) = y^2 + (\mu_1x + \mu_3)y - (x^3 + \mu_2x^2 + \mu_4x + \mu_6). \tag{2.1}
\]

We consider the general elliptic curve \(\mathcal{C} \) defined by \(f(x, y) = 0 \) with the unique point \(\infty \) at infinity. Although we assume \(\mathcal{C} \) is non-singular, the formulae in our theorems are valid even if this is not the case. It is known that any elliptic curve over any perfect field is written in this form (see [19, ch. 8], [20, ch. 3.3]). Many of the results for this curve are valid as identities on power series over quite general base rings. In this paper, we henceforth work over \(\mathbb{C} \).

We may define weights, denoted \(\text{wt} \), by

\[
 \text{wt}(x) = -2, \quad \text{wt}(y) = -3, \quad \text{wt}(\mu_j) = -j.
\]

From this definition, it is possible to deduce a weight for every object in the paper such that every formula in the paper is of homogeneous weight. In general, a numerical subscript throughout this paper will refer to the corresponding (negative) weight, except for the classical constants \(g_2 \) and \(g_3 \), which have weight \(-4\) and \(-6\), respectively.

Any differential of the first kind is a constant multiple of

\[
 \omega = \omega(x, y) = \frac{dx}{f_y(x, y)} = \frac{dx}{2y + (\mu_1x + \mu_3)} = -\frac{dy}{f_x(x, y)},
\]

where \(f_y \) and \(f_x \) denote \(\partial/\partial y \) and \(\partial/\partial x \), respectively. Let \(\Lambda \) denote the lattice consisting of the integrals of this differential along any closed path

\[
 \Lambda = \left\{ \int \omega \right\}.
\]

We define two meromorphic functions \(x(u) \) and \(y(u) \) by the set of equalities

\[
 u = \int_{\infty}^{(x(u), y(u))} \omega, \quad f(x(u), y(u)) = 0. \tag{2.2}
\]
Clearly, these are periodic with respect to \(A \) and have poles only at the points in \(A \). Note that it follows from these definitions that the variable \(u \) is of weight 1: \(\text{wt}(u) = 1 \).

From the definitions in (2.2), we have
\[
x(-u) = x(u) \quad \text{and} \quad y(-u) = y(u) + \mu_1 x(u) + \mu_3.
\]
Both \(x(u) \) and \(y(u) \) have a pole only at \(u = 0 \), of orders 2 and 3, respectively.

Let us take a local parameter \(t \) around the point \(\infty \) satisfying
\[
y = \frac{1}{t^3}.
\]
This choice of a local parameter is different from the usual one: \(t = -x/y \). Using (2.3) and (2.2), we can obtain the power-series expansions of \(x(u) \) and \(y(u) \) beginning with
\[
x(u) = u^{-2} - \left(\frac{1}{12} \mu_1^2 + \frac{1}{3} \mu_2 \right) + \left(\frac{1}{240} \mu_1^4 + \frac{1}{30} \mu_2 \mu_1^2 - \frac{1}{15} \mu_3 \mu_1 + \frac{1}{15} \mu_2^2 - \frac{1}{5} \mu_4 \right) u^2 + \cdots
\]
and
\[
y(u) = -u^{-3} - \frac{1}{2} \mu_1 u^{-2} + \left(\frac{1}{24} \mu_1^3 + \frac{1}{6} \mu_2 \mu_1 - \frac{1}{2} \mu_3 \right) + \cdots.
\]
(2.4)

For two variable points \((x, y)\) and \((z, w)\) on \(\mathcal{C} \), we define
\[
\Omega(x, y, z, w) = \frac{(y + w + \mu_1 z + \mu_3) dx}{(x - z)(2y + \mu_1 x + \mu_3)}.
\]
This has a pole of order 1 with residue 1 at \((z, w)\) when regarded as a form with variable \((x, y)\) for a fixed \((z, w)\). Indeed, since \((2w + \mu_1 z + \mu_3) = f_3(z, w) \) when \((x, y) = (z, w)\), the residue at \((z, w)\) is 1 and the zeros of the numerator and denominator at \((x, y) = (z, -w - \mu_1 z - \mu_3)\) cancel.

For a differential \(\eta \) of the second kind with pole only at \(\infty \), we take
\[
\xi(x, y; z, w) = \frac{d}{dz} \Omega(x, y; z, w) \, dz - \omega(x, y) \eta(z, w),
\]
where \((x, y), (z, w) \in \mathcal{C}\). Then the differential of the second kind \(\eta \) is chosen so that it satisfies
\[
\xi(x, y; z, w) = \xi(z, w; x, y).
\]
Such a choice of a differential form \(\eta \) is not unique. In this paper, we chose
\[
\eta(x, y) = \frac{-x \, dx}{2y + \mu_1 x + \mu_3}
\]
(2.5)
(see [18]). We fix the notation \(\eta \) for the form (2.5) from now on. Let \(\alpha \) and \(\beta \) be a pair of closed paths on \(\mathcal{C} \) which represents a symplectic basis of the homology group \(H_1(\mathcal{C}, \mathbb{Z}) \). We let \(\omega' \) and \(\omega'' \) be periods of \(\omega \) with respect to the closed paths \(\alpha \) and \(\beta \). Similarly, let \(\eta' \) and \(\eta'' \) be periods of \(\eta \) with respect to \(\alpha \) and \(\beta \). In general, for a given \(v \in \mathbb{C} \), we denote by \(v' \) and \(v'' \) the real numbers such that
\[
v = v' \omega' + v'' \omega''.
\]

Definition 2.1. We define the *sigma function* by
\[
\sigma(u) = u \exp \left\{ - \int_0^u \left(x(u) - \frac{1}{u^2} \right) \, du \right\}.
\]
The integrals and the exponential should be regarded as operations for power series. We can also express \(\sigma(u) \) analytically with \(\theta \) functions as
\[
\sigma(u) = \eta_{\text{Ded}}(\omega'^{-1} \omega'')^{-3} \cdot \omega' \cdot \omega'' \cdot \exp \left(- \frac{1}{2} u^2 \eta' \omega'^{-1} \right) \theta \left[\frac{1}{2} \right] \left(\omega'^{-1} u | \omega'^{-1} \omega'' \right),
\]
where \(\eta_{\text{Ded}}(r) = e^{\pi i r / 12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n r}) \) is Dedekind’s eta function (see [18]).
It is known that the σ-function does not depend on the choice of symplectic basis α and β of $H_1(\mathcal{E}, \mathbb{Z})$, and it can easily be checked that

$$\sigma(-u) = -\sigma(u).$$

(2.6)

Let

$$L(u, v) = u(v' \eta' + v'' \eta'')$$

for u and $v \in \mathbb{C}$, and $\chi(\ell) = \exp\left(2\pi i \left(\frac{1}{2} \ell' - \frac{1}{2} \ell'' + \frac{1}{2} u \ell'\right)\right)$. Then the σ-function has the following quasi-periodicity property.

Lemma 2.2 (lemma 2.6 in [18]). The σ-function satisfies

$$\sigma(u + \ell) = \chi(\ell) \sigma(u) \exp L(u + \frac{1}{2} \ell, \ell) \quad (\ell \in \Lambda).$$

(2.7)

Let $\tilde{\mu}_1 = \mu_1/2$. Then the σ-function may be represented by a series expansion starting with

$$\sigma(u) = u + (\tilde{\mu}_1^2 + \mu_2)\left(\frac{1}{3!}\right) u^3 + (\tilde{\mu}_1^4 + 2 \mu_2 \tilde{\mu}_1 + \mu_3 \mu_1 + \mu_2^2 + 2 \mu_4)\left(\frac{1}{5!}\right) u^5$$

$$+ (\tilde{\mu}_1^6 + 3 \mu_2 \tilde{\mu}_1^2 + 6 \mu_3 \tilde{\mu}_1^3 + 3 \mu_2^2 \tilde{\mu}_1 + 6 \mu_4 \tilde{\mu}_1 \mu_2)\left(\frac{1}{7!}\right) u^7 + \cdots.$$

(2.8)

For simplicity, we use $\mathbb{Z}[\mu_1, \mu_2, \mu_3, \mu_4, \mu_6] = \mathbb{Z}[\mu]$, $\mathbb{Q}[\mu_1, \mu_2, \mu_3, \mu_4, \mu_6] = \mathbb{Q}[\mu]$ and $\mathbb{Z}[\tilde{\mu}_1, \mu_2, \mu_3, \mu_4, \mu_6] = \mathbb{Z}[\mu']$.

For a commutative ring R, we denote by $R\langle z \rangle$ the ring

$$\left\{ \sum_{j=0}^{\infty} a_j \frac{z^j}{j!} \left| a_j \in R \right. \right\}.$$

Each element of this ring is said to be *Hurwitz integral* over R.

Remark 2.3 (Hurwitz integrality). Expansion (2.8) is Hurwitz integral over $\mathbb{Z}[\mu']$

$$\sigma(u) \in \mathbb{Z}[\mu']\langle u \rangle.$$

(2.9)

However, it is also known that

$$\sigma(u)^2 \in \mathbb{Z}[\mu]\langle u \rangle.$$

(2.10)

The reader is referred to the discussion in [18]. This integrality of the coefficients of this expansion is implicitly taken up in remark 4.4 later.

Definition 2.4. We now define as usual the elliptic functions

$$\wp(u) = -\frac{d^2}{d u^2} \log \sigma(u) \quad \text{and} \quad \wp'(u) = \frac{d}{d u} \wp(u).$$

(2.11)

These are periodic for any period $\ell \in \Lambda$ by lemma 2.2. Also, by (2.6), we have

$$\wp(-u) = \wp(u) \quad \text{and} \quad \wp'(-u) = -\wp'(u).$$

(2.12)

This $\wp(u)$ for the general curve (2.1) is slightly different from the work of Weierstrass for (1.4). Our $\wp(u)$ has the expansion

$$\wp(u) = \frac{1}{u^2} + \sum_{\ell \in \Lambda, \ell \neq 0} \left(\frac{1}{(u - \ell)^2} - \frac{1}{\ell^2} \right) - \frac{\mu_1^2 + 4 \mu_2}{12},$$

which is shown by the positions of the zeros of $\sigma(u)$. Comparing the power-series expansions in (2.4) and the essential part of the expansion of $\wp(u)$ with respect to u obtained by (2.8), we have

$$\wp(u) = x(u) \quad \text{and} \quad \wp'(u) = 2y(u) + \mu_1 x(u) + \mu_3.$$

(2.13)
Note that the \(\sigma \)-function has weight +1 and the \(\wp \)-function weight -2. By (2.13), we see that
\[
x(u) = \frac{\sigma''(u)\sigma(u) - \sigma'(u)^2}{\sigma(u)^2}
\]
and
\[
y(u) = \frac{-\left(1/2\right)\sigma''(u)u^2 + \left(3/2\right)\sigma'(u)\sigma(u) - \sigma'(u)^3}{\sigma(u)^3}
\]
(2.14)

where \(\sigma'(u) = (d/du)\sigma(u) \), \(\sigma''(u) = (d^2/du^2)\sigma(u) \) and \(\sigma'''(u) = (d^3/du^3)\sigma(u) \). If the parameters in (2.1) take values \(\mu_1 = \mu_2 = \mu_3 = 0 \), \(\mu_4 = -\frac{1}{3} \), \(\mu_6 = -\frac{1}{4} \), then the function \(\wp(u) \) from definition 2.4 satisfies the classical equation (1.1), and the function \(\sigma(u) \) from definition 2.1 is exactly the same as the Weierstrass \(\sigma \)-function. Under this specialization, the results of this section map to the well-known results for the Weierstrass functions.

3. Conjugate points and variables

For a variable point \((x, y)\) on \(\mathcal{E} \), we have three points (up to multiplicity) with the same second coordinate \(y \). We denote these conjugate points by
\[
(x, y), \ (x^*, y) \text{ and } (x^{**}, y).
\]
Moreover, for
\[
v = \int_{\infty}^{(x, y)} \omega,
\]
we define
\[
v^* = \int_{\infty}^{(x^*, y)} \omega \text{ and } v^{**} = \int_{\infty}^{(x^{**}, y)} \omega.
\]
(3.2)

Here the paths of integration are defined as the continuous transformations by taking * or ** for all points on the path in (3.1). We call \(v, v^* \) and \(v^{**} \) conjugate variables.

Lemma 3.1. In the above notation, we have
\[
v + v^* + v^{**} = 0.
\]
(3.3)

Proof. Since, for a given \(y \), the \(x, x^* \) and \(x^{**} \) are the solution of the equation \(f(X, y) = 0 \) of \(X \), we see \(f(X, y) = -(X - x)(X - x^*)(X - x^{**}) \). So,
\[
f_x(x, y) = -(x - x^*)(x - x^{**}),
\]
f_x(x^*, y) = \(-(x^* - x)(x^* - x^{**}) \)
and
\[
f_x(x^{**}, y) = -(x^{**} - x)(x^{**} - x^*).
\]
Then since
\[
\frac{1}{(x - x^*)(x - x^{**})} + \frac{1}{(x^* - x)(x^* - x^{**})} + \frac{1}{(x^{**} - x)(x^{**} - x^*)} = 0,
\]
we find
\[
-\frac{dy}{f_x(x, y)} - \frac{dy}{f_x(x^*, y)} - \frac{dy}{f_x(x^{**}, y)} = 0.
\]
This implies that
\[
\int_{\infty}^{(x, y)} \left(\frac{dy}{f_x(x, y)} + \frac{dy}{f_x(x^*, y)} + \frac{dy}{f_x(x^{**}, y)} \right) = 0.
\]
Hence,
\[
\int_{\infty}^{(x, y)} \frac{dy}{f_x(x, y)} + \int_{\infty}^{(x^*, y)} \frac{dy}{f_x(x^*, y)} + \int_{\infty}^{(x^{**}, y)} \frac{dy}{f_x(x^{**}, y)} = 0,
\]
where the three paths of integrals are chosen as in (3.1) and (3.2). Now we have the desired equality. □
By looking at the recursion relation giving this expansion, we see it belongs to u may be expressed as a polynomial in the x

Let x which is a polynomial of y

Namely, these μ depending only on m

Indeed $t\rightarrow \zeta t$ and $t\rightarrow \zeta^2 t$ gives rise to similar expansions of x^* and x^{**} in terms of t. Using the definition of ω and a formal reversing of the function $t\mapsto v$, we expand the function $v\mapsto t$. Substituting this into the expansions of $t\mapsto x^*$ and $t\mapsto x^{**}$ gives expansions of v^* and v^{**} with respect to v as

$$v^* = \zeta v + \cdots \in \mathbb{Q}[\mu, \zeta][[v]]$$

and

$$v^{**} = \zeta^2 v + \cdots \in \mathbb{Q}[\mu, \zeta][[v]].$$

4. New addition formula (general form)

First, we describe the general structure of our new class of addition formulæ, before constructing explicit examples in the following sections.

We may extend this class of addition formulæ by considering more general maps on the curve. Let us take a function

$$\varphi: \mathcal{C} \longrightarrow \mathbb{P}^1,$$

which is a polynomial of x and y over $\mathbb{Z}[\mu]$ of homogeneous weight. We suppose it is linear in y and the coefficient of its highest weight term with respect to x and y (not including $\{\mu_i\}$) is 1. Let $m \geq 2$ be the order of unique pole of φ and u be the analytic variable of φ regarding \mathcal{C} as a complex torus. Then there will exist also conjugate variables

$$u, u^*, u^{**}, u^3, \ldots, u^{m-1}.$$

Namely, these m variables are generically different, vary continuously and satisfy

$$\varphi(u) = \varphi(u^*) = \cdots = \varphi(u^{m-1}).$$

It is clear that these points have similar properties to those in §3. Namely, that

$$u + u^* + \cdots + u^{m-1} = 0.$$

Indeed $d(u + u^* + \cdots + u^{m-1})$ can be regarded as a holomorphic 1-form on \mathbb{P}^1 because this varies depending only on $\varphi(u)$, and hence the vanishing.

Theorem 4.1. For n variables $u^{(j)}$ $(j = 1, \ldots, n)$, under the conditions stated above

$$\frac{\sigma(u^{(1)} + \cdots + u^{(n)}) \prod_{i=1}^{m-1} \sigma(u^{(i)} + u^{(i)*)^*})}{\prod_{i=1}^{m} (\sigma(u^{(j)})^{1+(m-1)(m-2)}) \prod_{k=1}^{m-1} \sigma(u^{(j)^*)^*} y^{(-1)})}$$

may be expressed as a polynomial in the $x(u^{(j)})$ and $y(u^{(j)})$ for $j = 1, \ldots, n$ of weight $-\frac{1}{2}(n-1)$ $(mn - n + 2)$ over the ring $\mathbb{Q}[\mu]$.
Remark 4.2. If $\mu_1 = \mu_2 = \mu_4 = 0$, the expression in terms of $x(u^{(j)})'$s and $y(u^{(j)})'$s is symmetric with respect to any exchange

$$(x(u^{(j)}), y(u^{(j)})) \longleftrightarrow (x(u^{(j)}), y(u^{(j)})).$$

This fact is proved using the following: if $\mu_1 = \mu_2 = \mu_4 = 0$, we have

$$\sigma(\zeta u) = \zeta \sigma(u)$$

(see [2], lemma 4.1), and $u^* = \zeta u$, $u^{**} = \zeta^2 u$. Then the left-hand side is easily shown to be symmetric with respect to any exchange $u^{(j)} \longleftrightarrow u^{(j)}$.

We prove theorem 4.1 only in the special case $\varphi = y$ (theorem 4.3). The proof of theorem 4.3 is sufficiently descriptive to generalize to theorem 4.1, but to write down the full proof for theorem 4.1 would require considerable space and much extra notation, without illuminating the general principles involved.

Theorem 4.3. Let the function $\varphi = y$, so that $m = 3$. We denote $u^* = u^{**}$. Other notation is as introduced above and $u^{(1)}$, $u^{(2)}$, $u^{(3)}$ are variables. Then

$$\frac{\sigma(u^{(1)} + u^{(3)})\prod_{1 \leq j < i \leq n}[\sigma(u^{(j)} + u^{(i)})\sigma(u^{(i)})\sigma(u^{(j)})]}{\prod_{1 \leq j \leq n}[2\sigma(u^{(j)})^{2n+1-2i}\sigma(u^{(j)})^{i-1}\sigma(u^{(j)})^{-i-1}]}$$

may be expressed as a polynomial in the $x(u^{(j)})$ and $y(u^{(j)})$ for $j = 1, \ldots, n$ of weight $-(n^2 - 1)$ over the ring $\mathbb{Q}[\mu^*]$.

Remark 4.4. Theorems 4.1 and 4.3 are valid as a power-series identity over quite general base rings and need not be restricted only to the case of the complex numbers.

In particular, the coefficients in the expression of (4.1) in terms of $x(u^{(j)})$ and $y(u^{(j)})$ seem to belong to $\mathbb{Z}[\mu]$. In the following sections, we show this to be the case for $\varphi = y$ with $n = 2$ or 3.

By using the following two facts which are not difficult to prove, we can show that all the coefficients of $(2n - 1)!$ times the expression of (4.1) in terms of $x(u^{(j)})$ and $y(u^{(j)})$ belong to $\mathbb{Z}[\mu^*]$. First, the expansion of the product v^*v^{**} with respect to v is Hurwitz integral over $\mathbb{Z}[\mu]$,

$$v^*v^{**} = v^2 + \cdots \in \mathbb{Z}[\mu]\langle v \rangle.$$

It is obvious that $\sigma(v^*)/\sigma(v)$ and $\sigma(v^{**})/\sigma(v)$ are power series of v with coefficients in $\mathbb{Q}[\mu, \zeta]$. However, we have the second fact that the following Hurwitz integrality property holds,

$$\frac{\sigma(v^*)\sigma(v^{**})}{\sigma(v)^2} \in \mathbb{Z}[\mu^*]\langle v \rangle.$$

Each formula shown in, for instance, [21,22] is expressed as a determinant with entries being simple monomials of $x(u^{(j)})$ and $y(u^{(j)})$, which are the coordinates of the defining equation of the curve treated there. This implies that such coefficients have trivially the integrality property and may hint at how the integrality of our coefficients could be investigated in the future.

Proof of theorem 4.3. Regarding (4.2) as a function of each $u^{(j)}$ we can check that it is meromorphic and periodic with respect to Λ (see the proof of theorem 5.1 for details of such checks). Hence, it must have a rational expression in terms of $x(u^{(j)})$, $y(u^{(j)})$ for $j = 1, \ldots, n$. For arbitrarily fixed j, let $v = u^{(j)}$. Then as a function of v, (4.2) has its only pole at $v = 0$ (of order $2n - 1$). Recalling that the σ-function has weight $+1$ we see that (4.2) has weight $1 + n(n - 1) - n(2n - 1) = -(n^2 - 1)$. So, (4.2) can be expressed as a polynomial of the $x(u^{(j)})$ and $y(u^{(j)})$ (of weight $-(n^2 - 1)$) and hence an addition formula may be derived by taking (4.2) as the left-hand side and constructing this polynomial for the right-hand side.

To find the right-hand side, we may use the method of undetermined coefficients as follows. First, reducing higher terms of $y(u^{(j)})$'s in the right-hand side to linear terms of them by using the
relation \(f(x(u^{(j)}), y(u^{(j)})) = 0 \), we shall prepare the monomials
\[
\prod_{j=1}^{n} x(u^{(j)})^{p_j} y(u^{(j)})^{r_j}, \tag{4.5}
\]
where \(p_j \) are non-negative with \(2p_j + 3r_j \leq 2n - 1 \) and \(r_j \) are 0 or 1. Looking at the leading terms in Laurent expansions with respect to \(u^{(j)} \) of these monomials, we see that they are linearly independent over \(\mathbb{Q}(\mu) \). Of course, there are only finitely many such monomials. Second, set the right-hand side as
\[
\sum_{\{p_j, r_j\}} C_{\{p_j, r_j\}} \prod_{j=1}^{n} x(u^{(j)})^{p_j} y(u^{(j)})^{r_j} \tag{4.6}
\]
with undetermined coefficients \(C_{\{p_j, r_j\}} \). Because \(\sigma(u^*) \) and \(\sigma(u^{**}) \) are conjugate to each other with respect to \(\zeta \leftrightarrow \zeta^2 \), it must be \(C_{\{p_j, r_j\}} \in \mathbb{Q}(\mu) \). Then, after rewriting the right-hand side by using (2.14) as a rational function of \(\sigma(u^{(j)}), \sigma'(u^{(j)}), \sigma''(u^{(j)}), \sigma'''(u^{(j)}) \) for \(j = 1, \ldots, n \), we multiply both sides by
\[
\prod_{j=1}^{n} \sigma(u^{(j)})^{2n-1}. \tag{4.7}
\]
Then we get the following equality:
\[
\sigma(u^{(1)}) + u^{(2)} + \cdots + u^{(n)} \prod_{i<j} \sigma(u^{(i)}) + u^{(i)\ast} \sigma(u^{(j)}) + u^{(j)\ast\ast}
\times (\text{a product of power series of } u^{(j)} \text{ which belongs to } \mathbb{Q}[\mu][[u^{(j)}]])
\]
\[
= \sum_{\{p_j, r_j\}} C_{\{p_j, r_j\}} \prod_{j=1}^{n} \sigma(u^{(j)})^{2n-1} x(u^{(j)})^{p_j} y(u^{(j)})^{r_j}. \tag{4.7}
\]
Here, we used that \(\sigma(u^*) \sigma(u^{**}) \sigma(u^2) = 1 + \cdots \in \mathbb{Q}[\mu][[u]] \). By (2.14), the right-hand side of (4.7) is a polynomial of \(\sigma(u^{(j)}), \sigma'(u^{(j)}), \sigma''(u^{(j)}), \sigma'''(u^{(j)}) \) for \(j = 1, \ldots, n \) over \(\mathbb{Q}(\mu) \). Using (2.9) and that \(u^* u^{**} = u^2 + \cdots \in \mathbb{Q}[\mu][[u]] \), we see that the left-hand side of (4.7) is expanded as a series in
\[
\mathbb{Q}[\mu][[u^{(1)}, u^{(2)}, \ldots, u^{(n)}]].
\]
Now, we focus on a term of the form
\[
\prod_{j=1}^{n} \sigma'(u^{(j)})^{s_j} \sigma(u^{(j)})^{k_j} \tag{4.8}
\]
for some set \(\{s_j \geq 0, k_j \geq 0\} \) in the right-hand side. First, we look at such a term with all \(k_j = 0 \). This comes from a unique term of the right-hand side of (4.7). When we expand \(\sigma(u^2) x(u) \) and \(\sigma(u^3) y(u) \) with respect to \(u \) and the \(\mu_j \)'s using (2.14), the lowest terms of the expansion come from the \(\sigma'(u)^2 \) (\(\sigma'(u)^3 \)) terms in the first (second) equation of (2.14), respectively. Hence the coefficient \(C_{\{p_j, r_j\}} \) of the unique term is in \(\mathbb{Q}[\mu] \). We introduce an order to the set of elements \(\{k_1, k_2, \ldots, k_n; s_1, s_2, \ldots, s_n\} \) with the lexicographic order in \(k_j \)'s and anti-lexicographic order in \(s_j \)'s, and assuming that the former order is stronger than the latter. According to this order, we check successively that each term (4.8) comes from which terms on the right-hand side of (4.7) and we see the corresponding coefficients \(C_{\{p_j, r_j\}} \) are all in \(\mathbb{Q}[\mu] \).

5. New addition formula (2-variable case)

For a fixed \(x \), we have two points on the curve. If one point is denoted say \((x, y)\), then the other point is \((x, -y - \mu_1 x - \mu_3)\). In this situation, if \(u = \int_{\infty}^{(x, y)} \omega \) then \(-u = \int_{\infty}^{(x, -y - \mu_1 x - \mu_3)} \omega \). Suppose we replace the \(\sigma \)-function in equation (1.2) from the Introduction by the most general \(\sigma \)-function from definition 2.1. It can be easily checked that (1.2) remains valid for the fully general curve \(\mathcal{C} \).
We now give our first explicit new addition formula, by considering fixing the other coordinate and using the conjugate variables defined in §3. We use the notation of the previous sections but with variables u and v in place of the $u^{(1)}$ and $u^{(2)}$ from §4.

Theorem 5.1. We have the addition formula

$$
-\frac{\sigma(u+v)\sigma(u+v^*)\sigma(u+v^{**})}{\sigma(u)^2\sigma(v)\sigma(v^*)\sigma(v^{**})} = y(u) - y(-v)
$$

$$
= y(u) + y(v) + \mu_1 x(v) + \mu_3
$$

$$
= \frac{1}{2} (\wp'(u) + \wp'(v)) + \frac{\mu_1}{2} (\wp(u) - \wp(v)).
$$

(5.1)

Remark 5.2. We first comment on how our formula is modified when specializing the curve.

(i) As noted earlier, when the parameters in (2.1) take values $\mu_1 = \mu_2 = \mu_3 = 0$, $\mu_4 = -\frac{1}{4} g_2$, $\mu_6 = -\frac{1}{4} g_3$, the function $\wp(u)$ from definition 2.4 satisfies the classical equation (1.1). In this case, by (2.12) and (2.13), the right-hand side of the formula reduces to give the addition formula (1.5) we presented in the Introduction.

(ii) If we specialize further to consider the equianharmonic case (by further setting $\mu_4 = g_2 = 0$) then theorem 5.1 reduces to proposition 5.1 of [2], with equation (5.1) becoming (1.5) from the Introduction.

Proof of theorem 5.1. We first prove that the left-hand side of (5.1) is a meromorphic function of both u and v. Using (3.1) and lemma 2.2, we see the left-hand side is invariant with respect to the transformations $u \mapsto u + \ell$ and $v \mapsto v + \ell$ for $\ell \in \Lambda$. For the transformation $u \mapsto u + \ell$, the exponent of the exponential factor becomes

$$
L(\ell) = L(\ell) = L(0, \ell)
$$

$$
= 0.
$$

For $v \mapsto v + \ell$, it becomes

$$
L(\ell) = L(\ell) = L(0, \ell)
$$

$$
= 0.
$$

Therefore, the left-hand side is a function of u modulo Λ. It also has a unique pole at $u = 0$. It is well known that such a function is a polynomial of $\wp(u)$ and its higher order derivatives. In this case, the poles are of order 3, so we need only use \wp and \wp'.

Since the equation must be of homogeneous weight (weight -3 on both sides), we know that the left-hand side must be of the form

$$
a_1 \wp'(u) + a_2 \wp'(v) + b_1 \mu_1 \wp(u) + b_2 \mu_1 \wp(v) + c_1 \mu_1^3 + c_2 \mu_1 \mu_2 + c_3 \mu_3
$$

for some constants $a_1, a_2, b_1, b_2, c_1, c_2$ and c_3. For arbitrary fixed v, as a function of u, the left-hand side has zeros at $u = -v, u = -v^*, u = -v^{**}$ (of order 1 each), and no other zeros. Using the fact
that the \(\wp(u) \) is an even function we have that
\[
a_2 = a_1 (= a \text{ say}), \quad -b_2 = b_1 (= b \text{ say}) \quad \text{and} \quad c_1 = c_2 = c_3 = 0.
\]
Substituting the truncated expansion (3.4) up to the constant term and (3.5) into (5.1) gives
\[
-\frac{1}{u^3} + \frac{1}{v^3} + \frac{1}{2} \mu_1 \left(\frac{1}{u^2} - \frac{1}{v^2} \right) + \cdots.
\]
Since
\[
\wp(u) = \frac{1}{u^2} + \cdots,
\]
we find the coefficients are \(a = \frac{1}{2} \) and \(b = \frac{1}{2} \), concluding the proof.

We finish the section with some further remarks on the new formula (1.5). It could be argued that this formula lacks symmetry as the variables \(u \) and \(v \) are treated differently. We can replace \(u \) by \(u^* \) and \(u^{**} \) in turn, remembering that \(\wp(u) = \wp(u^*) = \wp(u^{**}) \), then add the three to get
\[
\sum_{i=1}^{3} \left[\frac{\prod_{j=1}^{3} \sigma(u_i + v_j) \sigma(u_i)}{\sigma(u_i)^3 \prod_{j=1}^{3} \sigma(v_j)} \right] = \frac{3}{2} \left(\wp(u) + \wp'(v) \right),
\]
where for typographical convenience we use \(u_i, \ i = 1, 2, 3, \) to represent \(u, u^* \) and \(u^{**} \), respectively. However, in producing such a formula we are throwing away information, in particular by subtracting two of the three relations described above we can obtain
\[
\frac{\sigma(u + v) \sigma(u + v^*) \sigma(u + v^{**})}{\sigma(u)^3} = \frac{\sigma(u^* + v) \sigma(u^* + v^*) \sigma(u^* + v^{**})}{\sigma(u^*)^3},
\]
and similarly for \((u, u^*) \) and \((u^*, u^{**}) \). A similar equation is seen in corollary 12.2 of [22].

6. New addition formula (3-variable case)

The second new explicit addition formula is given below. It is a natural 3-variable extension of theorem 5.1. See also [22,23] for similar formulae.

Theorem 6.1. Let \(u, v \) and \(w \) be variables. Denote, for brevity, \((x_{1u}, y_{1u}) = (x(u), y(u))\) and similarly for \(v \) and \(w \). With the notation of the previous sections we have a new addition formula
\[
\frac{\sigma(u + v + w) \sigma(u + v^*) \sigma(u + v^{**}) \sigma(u + w^*) \sigma(u + w^{**}) \sigma(v + w^*) \sigma(v + w^{**})}{\sigma(u)^3 \sigma(v)^3 \sigma(w)^3} = \sum_{i=0}^{8} r_i.
\]
The \(r_i \) are as stated below. Each is a polynomial in \(x_{1u}, x_{2v}, x_{3w}, y_{1u}, y_{2v}, y_{3w} \) and the \(\{ \mu_j \} \) (of combined weight \(i \)).

\[
\begin{align*}
r_0 & = (y_{1u} y_{2v} + y_{1u} y_{3w}) / (x_{1u} x_{2v} x_{3w}) (x_{1u} + x_{2v} + x_{3w}) - x_{1u}^2 x_{2v}^2 - x_{1u}^2 x_{3w}^2 - x_{2v}^2 x_{3w}^2, \\
r_1 & = \mu_1 (x_{1u} x_{2v} x_{3w} / (x_{2v} x_{3w} + x_{1u} x_{3w} + x_{1u} x_{2v}) (x_{1u} + x_{2v} + x_{3w}) - x_{1u}^2 x_{2v}^2 - x_{1u}^2 x_{3w}^2 - x_{2v}^2 x_{3w}^2, \\
r_2 & = \mu_1^3 (x_{1u} x_{2v} x_{3w} / (x_{2v} x_{3w} + x_{1u} x_{3w} + x_{1u} x_{2v}) (x_{1u} + x_{2v} + x_{3w}) - x_{1u}^2 x_{2v}^2 - x_{1u}^2 x_{3w}^2 - x_{2v}^2 x_{3w}^2, \\
r_3 & = \mu_1^5 (x_{1u} x_{2v} x_{3w} / (x_{2v} x_{3w} + x_{1u} x_{3w} + x_{1u} x_{2v}) (x_{1u} + x_{2v} + x_{3w}) - x_{1u}^2 x_{2v}^2 - x_{1u}^2 x_{3w}^2 - x_{2v}^2 x_{3w}^2, \\
r_4 & = -\mu_1^3 x_{1u} x_{2v} x_{3w} (x_{1u}^2 - x_{2v}^2 - 2 x_{1u} x_{2v} + x_{1u} x_{3w} + x_{2v} x_{3w}) \mu_1 \mu_2 \mu_3 \\
& \quad - (x_{1u} x_{2v} + x_{1u} x_{3w} + x_{2v} x_{3w}) \mu_2^2 \mu_3 \mu_4 \\
& \quad - (x_{1u} x_{2v} + x_{1u} x_{3w} + x_{2v} x_{3w}) \mu_2 ^2 \mu_3 \mu_4 \\
& = \mu_1^2 y_{1u} y_{2v} x_{3w} - (y_{1u} - y_{2v}) \mu_4 \mu_1 + (y_{1u} + y_{2v} + y_{3w}) \mu_1 \mu_2 \mu_3 \\
r_5 & = \mu_1^2 y_{1u} y_{2v} y_{3w} \mu_3 \mu_1 \mu_2 \mu_3 \mu_4 \mu_1 - (x_{1u} + x_{2v} + x_{3w}) (\mu_2 \mu_4 - \mu_6 - \mu_3^2), \\
r_7 & = 0 \\
\end{align*}
\]
and \(r_8 = (\mu_2 + \mu_2^2) \mu_2 - \mu_1 \mu_3 \mu_4 - \mu_4^2 \).
Proof. The left-hand side of the new formula is meromorphic in \(u, v \) and \(w \). Moreover, we can check easily that it is periodic with respect to \(\Lambda \). Hence, it may be expressed in terms of elliptic functions. Further, we can check that the left-hand side has poles of order 5 each in \(u, v \) and \(w \) and so the right-hand side must have an expression in \(\wp(u), \wp(v) \) and \(\wp(w) \) and their derivatives up to third order. More specifically, the right-hand side will be a sum of terms, each a product of three functions, one in each of the variables and with all functions taken from the set \{ \wp, \wp', \wp'', \wp''' \}. Such an expression is clear from the linear algebra when considering the space of elliptic functions graded by pole order (see, for example, [6,24] for more details on such spaces). This also clarifies why \(r_7 = 0 \) since there is no elliptic function of weight 1 to include in the right-hand side.

The coefficients of this right-hand side may then be determined using the series expansions of the functions discussed earlier. Since the left-hand side is of weight \(-8\) the expansions used need to contain terms with monomials in \(\mu_i \) up to weight \(-8\). We used MAPLE to implement this calculation (with details on similar calculations given in [6]). The right-hand side presented above was then obtained by making the substitutions implied by (2.13). \(\blacksquare \)

Remark 6.2. Using the mappings in (2.13), we could rewrite the right-hand side of the formula in theorem 6.1 in terms of \(\wp \) and its first derivative.

Remark 6.3. Let

\[
\begin{align*}
f_2 &= x_u + x_v + x_w + \mu_2 \\
f_4 &= x_u x_v + x_v x_w + x_u x_w - \mu_4 + \mu_1 y_w,
\end{align*}
\]

where the suffices of \(f \) are chosen to denote the weight. Each of these vanishes when \(v = u^* \) and \(w = u^{**} \) at the same time, since then \(y(u) = y(u^*) = y(u^{**}) \) and \(x(u), x(u^*), x(u^{**}) \) are the three solutions of the cubic equation

\[
X^3 + \mu_2 X^2 + (\mu_4 - \mu_1 y(u))X + \mu_6 - y(u)^2 - \mu_3 y(u) = 0.
\]

A calculation with Gröbner bases implemented with MAPLE shows that the right-hand side of the formula presented in theorem 6.1 lies in the ideal generated by \(f_2 \) and \(f_4 \). Specifically, we have

\[
\sum_{i=0}^8 r_i = Q_6 f_2 + Q_4 f_4,
\]

where

\[
Q_6 = y_w \mu_1^3 - (\mu_4 - x_v x_w - x_u x_v)\mu_1^2 + (x_u \mu_3 - \mu_3 x_w - x_w y_w - x_w y_u + 2y_w x_u + x_u y_v)\mu_1
\]

\[
- (x_u x_v + x_v x_w + x_u x_w)\mu_2 + \mu_3^2 + (y_v + y_w + y_u)\mu_3 - x_u x_v^2 + \mu_6
\]

\[
- x_u x_w^2 + y_w y_u - x_v^2 x_w + y_v y_u - x_v x_w^2 + y_w y_v - x_v x_u x_u - x_u \mu_4
\]

and

\[
Q_4 = (y_u + \mu_3)\mu_1 - (\mu_2 + x_v + x_w)\mu_4^2 + (x_v + x_w)\mu_2 + \mu_4 + x_w^2 + x_v x_w + x_v^2.
\]

This expression, along with (3.3), shows that both sides of the equation in theorem 6.1 vanish when \(v = u^* \) and \(w = u^{**} \).

Remark 6.4. In remark 5.2, we discussed how the 2-variable formula collapsed to known results when restricting the curve. We note now some similar restrictions for the 3-variable result.

(i) If \(\mu_1 = \mu_2 = \mu_3 = 0 \), \(\mu_4 = -\frac{1}{4} \), \(\mu_6 = -\frac{1}{4} \), in (2.1), then the right-hand side of the formula in theorem 6.1 becomes

\[
- \frac{1}{16} \wp^2 + \frac{1}{4} f_2(\wp(v)^2 + \wp(w)^2 + \wp(u)^2) - \wp(u)^2 \wp(w)^2 - \wp(v)^2 \wp(w)^2 - \wp(u)^2 \wp(v)^2
\]

\[
- \frac{1}{4}(\wp(u) + \wp(v) + \wp(w))(4\wp(u)\wp(v)\wp(w) + g_3 - \wp'(u)\wp'(v) - \wp'(v)\wp'(w) - \wp'(u)\wp'(w)).
\]

(ii) Suppose instead we simplify by setting \(\mu_1 = \mu_2 = \mu_4 = 0 \). Of course, we get another simplification of the right-hand side, but in this case also a simplification of the left-hand side.
side. Now, \(x^3\) is the only term in the curve equation with \(x\) and so the starred variables can all be described using roots of unity acting on the non-starred variables. Hence, in this case we have

\[
\sigma(u + v + w)\sigma(u + \zeta v)\sigma(u + \zeta^2 v)\sigma(u + \zeta w)\sigma(u + \zeta^2 w)\sigma(v + \zeta w)\sigma(v + \zeta^2 w) \\
\sigma(u^3)\sigma(v^3)\sigma(\zeta^0 v)\sigma(\zeta^0 w)\sigma(\zeta^0)\sigma(\zeta^0)^2 \sigma(\zeta^0)^2 \\
= (x_v + x_u + x_w)\mu_6 + (x_v + x_u + x_w)\mu_3^2 + (y_v + y_u + y_w)(x_v + x_u + x_w)\mu_3 \\
- x_v^2 x_w^2 - x_v^2 x_w^2 - x_u^2 x_w^2 - (x_v + x_u + x_w)(x_v x_w x_u - y_v y_w - y_u y_w - y_v y_u). \tag{6.2}
\]

(iii) The equianharmonic case is a sub-case of both the above specializations. In this case, we have the simplified right-hand side from (6.2) and a further reduced right-hand side which is obtained by setting \(g_2 = 0\) in (6.1). Using \(\varphi\)-coordinates analogously to (1.5), the right-hand side is

\[
\frac{1}{4}(\varphi(u) + \varphi(v) + \varphi(w))((\varphi'(u)\varphi'(v) + \varphi'(v)\varphi'(w) + \varphi'(u)\varphi'(w)) \\
- g_3 - 4\varphi(v)\varphi(w)\varphi(u)) - \varphi(u)^2 \varphi(v)^2 - \varphi(u)^2 \varphi(w)^2 - \varphi(v)^2 \varphi(w)^2.
\]

7. Final remarks

A specialization not considered above was the rational case, i.e. setting all \(\mu_i = 0\) (and \(g_i = 0\)). In this case, it may be checked that all equations collapse to simple algebraic identities.

We finish by giving some thoughts on further generalizations of the results.

(i) As proved by theorem 4.3, the explicit formulae certainly generalize to an \(n\)-variable case. However, we find that trying to derive the expanded form of the right-hand side in the 4-variable case using naive series expansions exceeds the memory limits of the current machines available to us. We expect that progress would follow from the discovery of a more compact expression for these right-hand sides, for example as a determinant.

(ii) For the equianharmonic curve \(y^2 = x^3 + \mu_6\), there is an action of the group of the sixth roots of unity on this curve, and on the coordinate space \(\mathbb{C}\) of \(\varphi(u)\) and \(\sigma(u)\). Let \(\zeta = \exp(2\pi i/3)\), a third root of unity. In [2], we gave a 3-variable formula giving

\[
\frac{\sigma(u + v + w)\sigma(u + \zeta v + \zeta^2 w)\sigma(u + \zeta^2 v + \zeta v + \zeta w)}{\sigma(u^3)\sigma(v^3)\sigma(w^3)}
\]

as a polynomial of \(\varphi(u)\), \(\varphi(v)\) and \(\varphi(w)\), and their first-order derivatives. Thus, it is reasonable to consider a naive generalization of this in our setting, namely an expression for

\[
\frac{\sigma(u + v + w)\sigma(u + v^* + w^{**})\sigma(u + v^{**} + w^*)}{\sigma(u^3)\sigma(v^3)\sigma(w^3)\sigma(v^*)\sigma(w^*)\sigma(w^{**})}
\]

However, we find this is no longer a periodic function with respect to \(\Lambda\), as may be checked by the translational formula (2.7). If we increase \(v\) to \(v + \ell\) (and similarly for \(w\)), the factors which appear in (2.7) do not cancel out.

(iii) Our results are likely to generalize to higher genus curves. For example, the natural analogue for theorem 5.1 for the curve

\[
y^2 + (\mu_1 x^2 + \mu_3 x + \mu_5)y = x^5 + \mu_2 x^4 + \mu_4 x^3 + \mu_6 x^2 + \mu_8 x + \mu_{10}
\]

could be obtained by considering five roots of \(x\) for a fixed \(y\).

Acknowledgements. This work began with discussions following the presentation ‘Frobenius–Stickelberger-type formulae for general curves’ by Y.O. at the 2010 ICMS conference entitled ‘The higher-genus sigma function and applications’. It also follows the work in [2,22]. The material in this paper was mainly derived when J.C.E. and M.E. visited Y.O. at the University of Yamanashi in Spring 2012. The authors acknowledge the
anonymous referees whose comments improved the paper. In particular, we thank the referee who pointed out the extension of theorem 4.3 to theorem 4.1.

Funding statement. This work was supported by Japanese Society for the Promotion of Science grant no. 22540006.

References

9. knockout research

