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We deliver a call to arms for probabilistic numerical
methods: algorithms for numerical tasks, including
linear algebra, integration, optimization and solving
differential equations, that return uncertainties
in their calculations. Such uncertainties, arising
from the loss of precision induced by numerical
calculation with limited time or hardware, are
important for much contemporary science and
industry. Within applications such as climate science
and astrophysics, the need to make decisions on the
basis of computations with large and complex data
have led to a renewed focus on the management
of numerical uncertainty. We describe how several
seminal classic numerical methods can be interpreted
naturally as probabilistic inference. We then show that
the probabilistic view suggests new algorithms that
can flexibly be adapted to suit application specifics,
while delivering improved empirical performance.
We provide concrete illustrations of the benefits of
probabilistic numeric algorithms on real scientific
problems from astrometry and astronomical imaging,
while highlighting open problems with these new
algorithms. Finally, we describe how probabilistic
numerical methods provide a coherent framework for
identifying the uncertainty in calculations performed
with a combination of numerical algorithms (e.g. both
numerical optimizers and differential equation
solvers), potentially allowing the diagnosis (and
control) of error sources in computations.
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1. Introduction
Probability theory is the quantitative framework for scientific inference [1]. It codifies how
observations (data) combine with modelling assumptions (prior distributions and likelihood
functions) to give evidence for or against a hypothesis and values of unknown quantities. There
is continuing debate about how prior assumptions can be chosen and validated (e.g. [2, §1.2.3]).
However, the role of probability as the language of uncertainty is rarely questioned; that is,
as long as the subject of inference is a physical variable. What if the quantity in question is
a mathematical statement, the solution to a computational task? Does it make sense to assign
a probability measure p(x) over the solution of a linear system of equations Ax = b if A and
b are known? If so, what is the meaning of p(x), and can it be identified with a notion of
‘uncertainty’? If one sees the use of probability in statistics as a way to remove ‘noise’ from
‘signal’, it seems misguided to apply it to a deterministic mathematical problem. But noise and
stochasticity are themselves difficult to define precisely. Probability theory does not rest on the
notion of randomness (aleatory uncertainty), but extends to quantifying epistemic uncertainty,
arising solely from missing information.1 Connections between deterministic computations and
probabilities have a long history. Erdös & Kac [3] showed that the number of distinct prime
factors in an integer follows a normal distribution. Their statement is precise, and useful for
the analysis of factorization algorithms [4], even though it is difficult to ‘sample’ from the
integers. It is meaningful without appealing to the concept of epistemic uncertainty. Probabilistic
and deterministic methods for inference on physical quantities have shared dualities from very
early on: Legendre introduced the method of least-squares in 1805 as a deterministic best fit for
data without a probabilistic interpretation. Gauss’ 1809 probabilistic formulation of the exact
same method added a generative stochastic model for how the data might be assumed to have
arisen. Legendre’s least-squares is a useful method without the generative interpretation, but
the Gaussian formulation adds the important notion of uncertainty (also interpretable as model
capacity) that would later become crucial in areas such as the study of dynamical systems.2

Several authors [12–14] have shown that the language of probabilistic inference can be applied
to numerical problems, using a notion of uncertainty about the result of an intractable or
incomplete computation, and giving rise to methods we will here call probabilistic numerics.3

In such methods, uncertainty regularly arises solely from the lack of information inherent in
the solution of an ‘intractable’ problem: a quadrature method, for example, has access only to
finitely many function values of the integrand; an exact answer would, in principle, require
infinitely many such numbers. Algorithms for problems such as integration and optimization
proceed iteratively, each iteration providing information improving a running estimate for the
correct answer. Probabilistic numerics provides methods that, in place of such estimates, update
probability measures over the space of possible solutions. As Diaconis noted [12], it appears
that Poincaré proposed such an approach already in the nineteenth century. The recent explosive
growth of automated inference, and the increasing importance of numerics for science, has given
this idea new urgency.

This article connects recent results, promising applications and central questions for
probabilistic numerics. We collate results showing that a number of basic, popular numerical
methods can be identified with families of probabilistic inference procedures. The probability
measures arising from this new interpretation of established methods can offer improved

1Many resources discussing epistemic uncertainty can be found, at the time of writing, at http://understand
inguncertainty.org (the authors are not affiliated with this web page).
2In fact, the very same connection between least-squares estimation and Gaussian inference has been re-discovered
repeatedly, simply because least-squares estimation has been re-discovered repeatedly after Legendre, under names such as
ridge regression [5], Kriging [6], Tikhonov’s method [7] and so on. The fundamental connection is that the normal distribution
is the exponential of the square �2 norm. Because the exponential is a monotonic function, minimizing an �2-regularized �2
loss is equivalent to maximizing the product of Gaussian prior and likelihood. In this sense, this paper is adding numerical
mathematicians to the list as yet another group of re-discoverers of Gaussian inference. Ironically, this list includes Gauss
himself, because Gaussian elimination, introduced in the very same paper as the Gaussian distribution itself [8], can be
interpreted as a conjugate-direction method [9], and thus as Gaussian regression [10]. See also [11].
3The probabilistic numerics community website can be found at http://www.probabilistic-numerics.org.
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performance, enticing new functionality and conceptual clarity; we demonstrate this with
examples drawn from astrometry and computational photography. The article closes by pointing
out the propagation of uncertainty through computational pipelines as a guiding goal for
probabilistic numerics.

It may be helpful to separate the issues discussed here clearly from other areas of overlap
between statistics and numerical mathematics: we here focus on well-posed deterministic
problems, identifying degrees of uncertainty arising from the computation itself. This is in
contrast to the notion of uncertainty quantification (e.g. [15,16]), which identifies degrees of
freedom in ill-posed problems, and where epistemic uncertainty arises from the set-up of the
computation, rather than the computation itself. It also differs from several concepts of stochastic
numerical methods, which use (aleatory) random numbers either to quantify uncertainty from
repeated computations (e.g. [17]) or to reduce computational cost through randomly chosen
projections (see, for example, [18,19]).

It is also important to note that, as a matter of course, existing frameworks already analyse
and estimate the error created by a numerical algorithm. Theoretical analysis of computational
errors generally yields convergence rates—bounds up to an unknown constant—made under
certain structural assumptions. Where probabilistic numerical methods are derived from classic
ones, as described below, they naturally inherit such analytical properties. At runtime, the error
is also estimated for the specific problem instance. Such runtime error estimation is frequently
performed by monitoring the dynamics of the algorithm’s main estimate (see [20, §II.4, for
ODEs], [21, §4.5, for quadrature]). Similarly, in optimization problems, the magnitude of the
gradient is often used to monitor the algorithm’s progress. Such error estimates are informal,
as are the solution estimates computed by the numerical method itself. They are meant to be
used locally, mostly as criteria for the termination of a method and the adaptation of its internal
parameters. They cannot typically be interpreted as a property (e.g. the variance) of a posterior
probability measure, and thus cannot be communicated to other algorithms, and thus cannot be
embedded in a larger framework of error estimation. They also do not usually inform the design
of the numerical algorithm itself; instead, they are a diagnostic tool added post hoc. Below, we
argue that the estimation of errors should be given a formal framework, and that probability
theory is uniquely suited for this task. Describing numerical computations as inference on a
latent quantity yields a joint, consistent, framework for the construction of solution and error
estimates. The inference perspective can provide a natural intuition that may suggest extensions
and improvements. And the probabilistic framework provides a lingua franca for numerical
computations, which allows the communication of uncertainty between methods in a chain
of computation.

2. Probabilistic numerical methods from classical ones
Numerical algorithms estimate quantities not directly computable, using the results of more
readily available computations. Even existing numerical methods can thus be seen as inference
rules, reasoning about latent quantities from ‘observables’ or ‘data’. At face value, this connection
between inference and computation is vague. But several recent results have shown that it can
be made rigorous, such that established deterministic rules for various numerical problems
can be understood as maximum a posteriori estimates under specific priors (hypothesis classes)
and likelihoods (observation models). The recurring picture is that there is a one-to-many
relationship between a classic numerical method for a specific task and a family of probabilistic
priors which give the same maximum posterior estimate but differing measures of uncertainty.
Choosing one member of this family amounts to fitting an uncertainty, a task we call
uncertainty calibration. The result of this process is a numerical method that returns a point
estimate surrounded by a probability measure of uncertainty, such that the point estimate
inherits the proved theoretical properties of the classic method, and the uncertainty offers
new functionality.
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(a) Quadrature
We term the probabilistic numeric approach to quadrature Bayesian quadrature. Diaconis [12] may
have been first to point out a clear connection between a Gaussian process regression model and
a deterministic quadrature rule, an observation subsequently generalized by Wahba [22, §8] and
O’Hagan [23], and also noted by [24]. Details can be found in these works; here we construct an
intuitive example highlighting the practical challenges of assigning uncertainty to the result of a
computation. For concreteness, consider f (x) = exp[− sin2(3x) − x2] (black in figure 1a). Evidently,
f has a compact symbolic form and f (x) can be computed for virtually any x ∈ � in nanoseconds.
It is a wholly deterministic object. Nevertheless, the real number

F =
∫ 3

−3
f (x) dx (2.1)

has no simple analytic value, in the sense that it cannot be natively evaluated in low-level code.
Quadrature rules offer ‘black box’ estimates of F. These rules have been optimized so heavily (e.g.
[21]) that they could almost be called ‘low level’, but their results do not come with the strict error
bounds of floating-point operations; instead, assumptions about f are necessary to bound error.
Perhaps the simplest quadrature rule is the trapezoid rule, which amounts to linear interpolation
of f (red line in figure 1a(i)): evaluate f (xi) on a grid −3 = x1 < x2 < · · · < xN = 3 of N points, and
compute

F̂midpoint =
N∑

i=2

1
2

[f (xi) + f (xi−1)](xi − xi−1). (2.2)

(b) Bayes–Hermite quadrature
A probabilistic description of F requires a joint probability distribution over f and F. Since f lies
in an infinite-dimensional Banach or Hilbert space, no Lebesgue measure can be defined. But
Gaussian process measures can be well-defined over such spaces, and offer a powerful framework
for quadrature [22,25]. In particular, we may choose to model f on [−3, 3] by p(f ) = GP(f ; 0, k), a
Gaussian process with vanishing mean μ = 0 and the linear spline covariance function [26] (a
stationary variant of the Wiener process)

k(x, x′) = c(1 + b − 1
3 b|x − x′|), for some c, b > 0. (2.3)

More precisely, this assigns a probability measure over the function values f (x) on [−3, 3], such
that any restriction to finitely many evaluations y = [ f (x1), . . . , f (xM)] at X = [x1, . . . , xN] is jointly
Gaussian distributed with zero mean and covariance cov[ f (xi), f (xj)] = k(xi, xj). Samples drawn
from this process are shown in grey in figure 1a(i). These sample paths represent the hypothesis
class associated with this Gaussian process prior: they are continuous, but not differentiable,
in mean square expectation [27, §2.2]. Because Gaussian processes are closed under linear
projections (e.g. [27, p. 27]), this distribution over f is identified with a corresponding univariate
Gaussian distribution [26],

p(F) =N
[

F; 0,
∫∫ 3

−3
k(x̃, x̃′) dx̃ dx̃′ = c

(
1 + b

3

)]
, (2.4)

on F. The strength of this formulation is that it provides a clear framework under which
observations f (xi) can be incorporated. The measure on p(F) conditioned on the collected function
values is another scalar Gaussian distribution

p(F | y) =N
[

F;
∫ 3

−3
k(x̃, X)K−1y dx̃,

∫∫ 3

−3
k(x̃, x̃′) − k(x̃, X)K−1k(X, x̃′) dx̃ dx̃′

]
, (2.5)

where k(x̃, X) = [k(x̃, x1), . . . , k(x̃, xN)] and K is the symmetric positive definite matrix with
elements Kij = k(xi, xj). The final expression in the brackets, the posterior covariance, can be
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Figure 1. Quadrature rules, illustrating the challenge of uncertainty calibration. (a(i)(ii)) Function, f (x) (black line), is
approximately integrated using two different Gaussian process priors (a(i) linear spline; a(ii) exponentiated quadratic), giving
posterior distributions and mean estimates. Grey lines are functions sampled from the prior. The thick coloured line is the
posterior mean, thin lines are posterior samples and the delineation of two marginal standard deviations. The shading
represents posterior probability density. (b(i)(ii)) As the number of evaluation points increases, the posterior mean (thick line
with points) converges to the true integral value; note the more rapid convergence of the exponentiated-quadratic prior.
The posterior covariance provides an error estimate whose scale is defined by the posterior mean alone (each thin coloured
line in the plots corresponds to a different instance of such an estimate). But it is only a meaningful error estimate if it is
matched well to the function’s actual properties. (b(i)) shows systematic difference between the convergence of the real error
and the convergence of the estimated error under the linear spline, whereas convergence of the estimated error under the
exponentiated-quadratic prior is better calibrated to the real error. Grey grid lines in the background, bottom left, correspond to
O(N−1) convergence of the error in the number N of function evaluations. (a(iii)(iv),b(iii)(iv)) The same experiment repeated
with a function f drawn from the spline kernel prior. For this function, the trapezoid rule is the optimal statistical estimator of
the integral (note well-calibrated error measure in b(iii)), while the Gaussian kernel GP is strongly over-confident.

optimized with respect to X to design a ‘most informative’ dataset. For the spline kernel (2.3),
this leads to placing X on a regular, equidistant, grid [26].

The spline kernel k of (2.3) is a piecewise linear function with a single point of non-
differentiability at x = x′. The posterior mean k(x̃, X)K−1y is a weighted sum of N such kernels
centred on the evaluation points X and constrained by the likelihood to pass through the values
y at the nodes X. Thus, the posterior mean is a linear spline interpolant of the evaluations,
and the posterior mean of equation (2.5) is exactly equal to the trapezoid-rule estimate from X
(see also [12]). That is, Bayesian quadrature with a linear spline prior provides a probabilistic
interpretation of the trapezoidal rule; it supplements the estimate with a full probability
distribution characterizing uncertainty. The corresponding conditional on f is a Gaussian process
whose mean is the piecewise linear red function in figure 1a(i) (the figure also represents
the conditional distribution p( f | f (x1), . . . , f (xN)) as a red cloud, and some samples). Various
other, more elaborate, quadrature rules (e.g. higher order spline interpolation and Chebyshev
polynomials) can be cast probabilistically in analogous ways, simply by changing the covariance
function k [12,22,23].
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(c) Added value, and challenge, of probabilistic output
A non-probabilistic analysis of the trapezoid rule is that, for sufficiently regular functions f , this
rule converges at a rate of at least O(N−1) to the correct value for F as N increases (e.g. [21,
eq. 2.1.6]) (other quadrature rules, like cubic splines, have better convergence for differentiable
functions). Figure 1b(i) shows the mean estimate (equivalently, the trapezoid rule) as a thick line.
Grey help lines represent O(N−1) convergence. Clearly, the asymptotic behaviour is steeper than
those lines.4 So the theoretical bound is correct, but it is also of little practical value: no linear
bound is tight from start to convergence.

On the probabilistic side, the standard deviation of the conditional (2.5) is regularly interpreted
as an estimate of the imprecision of the mean estimate. In fact, this error estimate (thin red lines in
figure 1a(i)) is analogous to the deterministic linear convergence bound for continuous functions.
There is a family of such error bounds associated with the same posterior mean, with each line
corresponding to a different value for the unknown constant in the bound and different values for
the parameters b and c in the covariance.5 It may seem as though the probabilistic interpretation
had added nothing new, but since this view identifies quadrature rules of varying assumptions
as parameter choices in Gaussian process regression, it embeds seemingly separate rules in a
hierarchical space of models, from which models with good error modelling can be selected by
hierarchical probabilistic inference. This can be done without collecting additional data points
[25, §5].

More generally, the probabilistic numeric viewpoint provides a principled way to manage
the parameters of numerical procedures. Where Markov chain Monte Carlo procedures might
require the hand-tuning of parameters such as step sizes and annealing schedules, Bayesian
quadrature allows the machinery of statistical inference procedure to be brought to bear upon
such parameters. A practical example of the benefits of approximate Bayesian inference for the
(hyper-)parameters of a Bayesian quadrature procedure is given by [28].

The function f used in this example is much smoother than typical functions under the
Gaussian process prior distribution associated with the trapezoid rule (shown as thin grey
samples in figure 1a(i)). Figure 1a(ii),b(ii) (using orange) shows analogous experiments with the
exponentiated-quadratic covariance function k(x, x′) = θ2 exp(−(x − x′)2/λ2), corresponding to a
very strong smoothness assumption on f [29] (see grey samples in figure 1a(ii)), giving a very
quickly converging estimate. In this case, the ‘error bars’ provided by the standard deviation
converge in a qualitatively comparable way.

Of course, the faster convergence of this quadrature rule based on the exponentiated-quadratic
covariance prior is not a universal property. It is the effect of a much stronger set of prior
assumptions. If the true integrand is rougher than expected under this prior, the quadrature
estimate arising from this prior can be quite wrong. Figure 1a(iii)(iv),b(iii)(iv) shows analogous
experiments on an integrand that is a true sample from a Gaussian process with the spline
covariance (2.3). In this case, the spline prior is the optimal statistical estimator by construction,
and its error estimate is perfectly calibrated (figure 1a(iii),b(iii)), while the exponentiated-
quadratic kernel gives over-confident, and inefficient, estimates (figure 1a(iv),b(iv)).

Identifying the optimal regression model from a larger class, just based on the collected
function values, requires more computational work than to fix a regressor from the start.
But it also gives better calibrated uncertainty. Contemporary general-purpose quadrature
implementations (e.g. [21]) remain lightweight by recursively re-using previous computations.
The above experiments show that it is possible to design Bayesian quadrature rules with well-
calibrated posterior error estimates, but it remains a question how small the computational
overhead from a probabilistic computation over these methods can be made. Even so, formulating
quadrature as probabilistic regression precisely captures a trade-off between prior assumptions

4This, too, is a well-known result: if the integrand is differentiable, rather than just continuous, the trapezoid rule has
quadratic-convergence rate [21, eq. 2.1.12].
5The initial behaviour of the red lines in the figure is a function of the scale b, which relates to assumptions about the rate at
which the asymptotic quadratic-convergence is approached.
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inherent in a computation and the computational effort required in that computation to achieve
a certain precision. Computational rules arising from a strongly constrained hypothesis class can
perform much better than less restrictive rules if the prior assumptions are valid. In the numerical
setting—in contrast to many empirical situations in statistics—it is often possible to precisely
check whether a particular prior assumption is valid: the machine performing the computation
has access, at least in principle, to a formal, complete, description of its task, in the form of
the source code describing the task (the integrand, the optimization objective, etc.). Using this
source code, it is possible, for example, to test, at runtime, whether, and how many times, an
integrand is continuously differentiable (e.g. [30]). Using this information will in future allow
the design of improved quadrature methods. Once one knows that general-purpose quadrature
methods effectively use a Gaussian process prior over function values, it is natural to ask whether
this prior actually incorporates the salient information available for one’s specific problem.
Including such information in the prior leads to customized, ‘tailored’, numerical methods that
can perform better.

Probabilistic inference also furnishes the framework required to tackle numerics tasks using
decision theory. For quadrature, the decision problem to be solved is that of node selection:
that is, the determination of the optimal positions for points (or nodes) at which to evaluate the
integrand. With the definition of an appropriate loss function, such as the posterior variance of
the integral, such nodes can be optimally selected by minimizing the expected loss function. It
seems clear that this approach can improve upon the simple uniform grids of many traditional
quadrature methods, and can enable active learning: where surprising evaluations can influence
the selection of future nodes.

This decision-theoretic approach stands in contrast with that adopted by randomized, Monte
Carlo, approaches to quadrature. Such approaches generate nodes with the use of a pseudo-
random number generator, injecting additional epistemic uncertainty (about the value of the
generator’s outputs) into a procedure designed to reduce the uncertainty in an integral. It is
worth noting that the use of pseudo-random generators burdens the procedure with additional
computational overhead: pseudo-random numbers are cheap, but not free. The principal feature
of Monte Carlo approaches is their conservative nature: the Monte Carlo policy will always,
eventually, take an additional node arbitrarily close to an existing node. The disadvantage of this
strategy is its waste of valuable evaluations: the convergence rate of Monte Carlo techniques,
O(N−1/2), is clearly improved upon by both traditional quadrature and Bayesian quadrature
methods. This problem is only worsened by the common discarding of evaluations known as
‘burn-in’ and ‘thinning’. The advantage of Monte Carlo, of course, is its robustness to even highly
non-smooth integrands. However, Bayesian quadrature can realize more value from evaluations
by exploiting known structure (e.g. smoothness) in the integrand.

(d) Empirical evaluation of Bayesian quadrature for astrometry
We illustrate this on an integration problem drawn from astrometry, the measurement of the
motion of stars. In order to validate astrometric analysis, we aim to recover the number of planets
present in synthetic data generated (with a known number of planets) to mimic that produced
by an astrometric facility such as the GAIA satellite [31].6 Here, quadrature’s task is to compute
the model evidence (marginal likelihood) Z = ∫

p(D | θ ,M)p(θ |M) dθ of a model M for orbital
motions, where D are the gathered observations and θ are the model parameters. Specifically, it
is of interest to compare the evidence for models including differing numbers of exoplanets. For
the following example, to provide a focal problem upon which to compare quadrature methods,
we compute the evidence of a model with two such planets on data generated with a two-planet
model. The corresponding integral is analytically intractable, with a multi-modal integrand (the
likelihood p(D | θ ,M)) and a 19-dimensional θ rendering the quadrature problem challenging.

6The authors are grateful to H. Parviainen and S. Aigrain for providing data and code examples.

 on August 22, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


8

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150142

...................................................

40

20

0

WSABI
SMC
AIS
BMC

lo
g 

|lo
g 

Z
pr

ed
–

lo
g 

Z
tr

ue
|

time in seconds
10–2 10–1 1 10 102 103

Figure 2. We compare different quadrature methods in computing the 19-dimensional integral giving model evidence in an
astrometry application. The Bayesian quadrature algorithm (WSABI) that employs active selection of nodes, along with prior
knowledge of the smoothness and non-negativity of the integrand, converges faster than the Monte Carlo approaches: simple
Monte Carlo (SMC) and annealed importance sampling (AIS). Note that Bayesian Monte Carlo (BMC) is a Bayesian quadrature
algorithm that uses the same samples as SMC, explaining their similar performance. Note also the performance improvement
offered by WSABI over BMC, suggesting the crucial role played by the active selection of nodes.

As the probabilistic method, we use a recent algorithm: warped, sequential, active Bayesian
integration (WSABI7) [32]. WSABI is a Bayesian quadrature algorithm that uses an internal
probabilistic model that is well-calibrated to the suspected properties of the problem’s integrand.
Firstly, like the exponentiated quadratic, WSABI’s covariance function is suitable for smooth
integrands, as are expected for the problem. Secondly, and beyond what is achievable with classic
quadrature rules, WSABI explicitly encodes the fact that the integrand (the likelihood p(D | θ ,M))
is strictly positive. WSABI also makes use of a further opportunity afforded by the probabilistic
numeric approach: it actively selects nodes so as to minimize the uncertainty in the integral. This
final contribution permits nodes to be selected that are far more informative than gridded or
randomly selected evaluations. We compare this algorithm against two different Monte Carlo
approaches to the problem: annealed importance sampling (AIS) [33] (which was implemented
with a Metropolis–Hastings sampler) and simple Monte Carlo (SMC). We additionally compared
against Bayesian Monte Carlo (BMC) [24], a Bayesian quadrature algorithm using the simpler
exponentiated-quadratic model, and whose nodes were taken from the same samples selected by
SMC. ‘Ground truth’ (Ztrue) was obtained through exhaustive SMC sampling (106 samples). The
results in figure 2 show that the probabilistic quadrature method achieves improved precision
drastically faster than the Monte Carlo estimates. It is important to point out that the plot’s
abscissa is ‘wall-clock’ time, not algorithmic steps. Probabilistic algorithms need not be expensive.

(e) Linear algebra
Computational linear algebra covers various operations on matrices. We will here focus on linear
optimization, where b ∈ R

N is known and the task is to find x ∈ R
N such that Ax = b where A ∈

R
N×N is symmetric positive definite. We assume access to projections As for arbitrary s ∈ R

N .
If N is too large for exact inversion of A, a widely known approach is the method of conjugate
gradients (CG) [9], which produces a convergent sequence x0, . . . , xM of improving estimates for x.
Each iteration involves one matrix-vector multiplication and a small number of linear operations,
to produce the update si = xi − xi−1, and an ‘observation’ yi = Asi. The good performance of CG
has been analysed extensively (e.g. [34, §5.1]).

We will use the shorthands SM = [s1, . . . , xM] and YM = [y1, . . . , yM] for the set of projection
directions and ‘observations’ after M iterations of the method. Defining a probabilistic numerical
algorithm requires a joint probability measure p(YM, A, b, x | SM) over all involved variables,
conditioned on the algorithm’s active design decisions; and an ‘action rule’ (design, policy, control
law) describing how the algorithm should collect data. Recent work by Hennig [10] describes such

7Matlab code for WSABI is available at https://github.com/OxfordML/wsabi.

 on August 22, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

https://github.com/OxfordML/wsabi
http://rspa.royalsocietypublishing.org/


9

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150142

...................................................

a model which exactly reproduces the sequence {xi}i=1,...,M≤N of CG: as prior, choose a Gaussian
measure over the (assumed to exist) inverse H = A−1 of A

p(H) =N (H; H0, Γ (W ⊗ W)Γ ᵀ). (2.6)

This implies a Gaussian prior over x = Hb, and a non-Gaussian prior over A. In (2.6), N is a
Gaussian distribution over the N2 elements of H stacked into a vector H. Γ is the symmetrization
operator (Γ A = 1

2 (A + Aᵀ)), and ⊗ is the Kronecker product (Γ (W ⊗ W)Γ ᵀ is also known as the
symmetric Kronecker product [35]). As projections are presumed noise-free, the likelihood is
the Dirac distribution, the limit of a Gaussian with vanishing width, which can also be seen as
performing a strict conditioning of the prior on the observed function values,

p(YM | A, b, x, SM) =
∏

i

δ(Asi − yi) =
∏

i

δ(si − Hyi). (2.7)

The action rule at iteration i is to move to xi+1 = xi − αĤi(Axi − b), where Ĥi is the posterior mean
p(H | YM). The optimal step α can be computed exactly in a linear computation.

Equation (2.6) requires choices for H0 and W. The prior mean is set to unit, H0 = I. If W ∈
R

N×N is positive definite, then p(H) assigns finite measure to every symmetric H ∈ R
N×N , and the

algorithm converges to the true x in at most N steps, assuming exact computations [10]. In this
sense it is non-restrictive, but of course some matrices are assigned more density than others. If W
is set to a value among the set {W ∈ R

N×N | W symm. positive definite and WYM = σSM, σ ∈ R+}
(this includes the true matrix W = H, but does not require access to it), then the resulting algorithm
exactly reproduces the iteration sequence {xi}i=0,...,N of the CG method, and can be implemented in
the exact same way. However, this derivation also provides something new: a Gaussian posterior
distribution p(H | y) =N (H; HM, Γ (WM ⊗ WM)Γ ᵀ) over H. Details can be found in [10]; for the
present discussion it suffices to know that both the posterior mean HM and covariance parameter
WM are of manageable form. In particular, HM = I + UEUᵀ with a diagonal matrix E ∈ R

2M×2M

and ‘skinny’ matrices U ∈ R
N×2M, which are a function of the steps s and observed projections y.

So, as in the case of quadrature, there is a family of Gaussian priors of varying width (scaled by
σ ), such that all members of the family give the same posterior mean estimate. And this posterior
mean estimate is identical to a classic numerical method (CG). But each member of the family
gives a different posterior covariance—a different uncertainty estimate.

It is an interesting question to which degree the uncertainty parameter WM can be designed
to give a meaningful error estimate. Some answers can be found in [10]. Interestingly, the
equivalence class of prior covariances W0 that match CG in the mean estimate has more degrees
of freedom than the number M of observations (matrix-vector multiplications) collected by
the algorithm during its typical runtime. Fitting the posterior uncertainty WM thus requires
strong regularization. The method advocated in [10] constructs such a regularized estimator
exclusively from scalar numbers already collected during the run of the CG method, thus keeping
computational overhead very small.

But, as in quadrature, there are valuable applications for the probabilistic formulation that do
not strictly require a well-calibrated width of the posterior. Applications that make primary use
of the posterior mean may just require algebraic structure in the prior, up to an arbitrary scaling
constant, to incorporate available, helpful, information. We will not do this here and instead
highlight another use of probabilities over point estimates: the propagation of knowledge from
one linear problem to another related problem.

The approach described in the following is known in the numerical linear algebra community
as the recycling of Krylov sequences [36]. However, while the framework of classic numerical
analysis required challenging and bespoke derivation of this result, it follows naturally in the
probabilistic viewpoint as the extension of a parametric regressor to a filter on a time-varying
process. The probabilistic formulation of computation uses the universal and unique language
of inference to enable the solution of similar problems across the breadth of numerics using
similar techniques. This is in contrast to the compartmentalized state of current numerics,
which demands distinct expert knowledge of each individual numeric problem in order to
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Figure 3. Solving sequences of linear problems by using the probabilistic interpretation of CG, also known as the recycling
of Krylov sequences. (a(i)) A sequence of observed astronomical images y i is modelled as the convolution of a stationary
true image x with a time-varying point-spread function f i (the matrix X encodes the convolution with x). Each individual
deconvolution task requires one run of a linear solver, here chosen to be the method of CG. (b) If each problem is solved
independently, each instance of the solver progresses similarly (b(i) optimization residuals over time; each ‘jump’ in the residual
is the start of a new frame/deconvolutionproblem). If the posteriormean implied by theprobabilistic interpretation of the solver
is communicated fromoneproblem to thenext, the solvers progress increasingly faster (b(ii) note decreasingnumber of steps for
each deconvolution problem, and decrease, by about one order of magnitude, of initial residuals). (a(ii)) Over time, the vectors
spanning this posterior mean for X−1 converge to a generic basis for point-spread functions.

make progress towards it. Furthermore, there is social value in making results accessible to any
practitioner with a graduate knowledge of statistics.

In many set-ups, the same A features in a sequence of problems Axt = bt, t = 1, . . .. In others,
a map At changes slightly from step t to step t + 1. Figure 3 describes a blind deconvolution
problem from astronomical imaging:8 the task is to remove an unknown linear blur from a
sequence y1, . . . , yK of astronomical images [37]. Atmospherical disturbances create a blur that
continuously varies over time. The model is that each frame yi is the noisy result of convolution of
the same ground truth image x with a spatially varying blur kernel f i, i.e. yi = f ix + ni, where ni is
white Gaussian noise. A matrix X encodes the convolution operation as yi = Xf i + ni (it is possible

8The authors thank Harmeling et al. [37] for providing data.
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to ensure X is positive definite). A blind deconvolution algorithm iterates between estimating X
and estimating the f i [37]. Each iteration thus requires the solution of K linear problems (with
fixed X) to find the f i, then one larger linear problem to find x. The naïve approach of running
separate instances of CG wastes information, because the K linear problems all share the matrix
X, and from one iteration to the next, the matrix X changes less and less as the iterations approach
convergence. Instead, information can be propagated between related computations using the
probabilistic interpretation of CG, by starting each computation in the sequence with a prior mean
H0 set to the posterior mean HM of the preceding problem. Owing to the low-rank structure of
HM, this has low cost. To prevent a continued rise in computational costs as more and more linear
problems are solved, HM can be restricted to a fixed rank approximation after each inner loop, also
at low cost. Figure 3b shows the increase in computational efficiency: for the baseline of solving
40 linear problems independently in sequence, each converges about equally fast (figure 3b(i);
each ‘jump’ is the start of a new problem). Figure 3b(ii) shows optimization progress of the same
40 problems when information is propagated from one problem to the next. The first problem
amounts to standard CG, while subsequent iterations can make increasingly better use of the
available information. The figure also shows the dominant eigenvectors of the inferred posterior
means of X−1 after K = 40 subsequent linear problems, which converge to a relatively generic
basis for point-spread functions. Although not strictly correct, this scheme can be intuitively
understood as inferring a pre-conditioner across the sequence of problems, by Bayesian filtering
(the technical caveat is that the described scheme does not re-scale the linear problem itself, as a
pre-conditioner would, it just shifts the initial solution estimate).

(i) Further areas

These examples highlight the areas of quadrature and linear algebra. Analogous results,
identifying existing numerical methods with maximum a posteriori estimators, have been
established in other areas, too. We do not experiment with them here, but they help complete
the picture of numerical methods as inference across problem boundaries, as follows.

In nonlinear optimization, quasi-Newton methods such as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) rule are deeply connected to CG (in linear problems, BFGS and CG are the
same algorithm [38]). The BFGS algorithm can be interpreted as a specific kind of autoregressive
generalization of the Gaussian model for CG [39]. Among other things, this allows explicit
modelling of noise on evaluated gradients, a pressing issue in large-scale machine learning [40].

One currently particularly exciting area for probabilistic numerics is ordinary differential
equations; more specifically, the solution of initial value problems (IVPs) of the form (dx/dt)(t) =
f (x(t), t), where x : R+ → R

N is a real-valued curve parametrized by t known to start at the
initial value x(t0) = x0. Explicit Runge–Kutta methods are a basic and well-studied tool for such
problems [20]—while not necessarily state of the art, they nevertheless perform well on many
problems, and are conceptually very clear. From the inference perspective, Runge–Kutta methods
are linear extrapolation rules. At increasing nodes t0 < t1 < · · · < ti < ts they repeatedly construct
‘estimates’ x̂(ti) ≈ x(ti) for the true solution which is used to collect an ‘observation’ yi = f (x̂(ti), ti),
such that the estimate is a linear combination of previous observations,

x̂(ti) = x0 +
∑
j<i

wijyj. (2.8)

Crucially, the weights wij are chosen such that, after s evaluations, the estimate has high
convergence order: ‖x(ts) − x̂(ts)‖ =O(hp), with an order p ≤ s (typically, p ≤ 5).

It is important to point out the central role that linear extrapolation, and linear computations
more generally, play again here, as they did in the other numerical settings discussed above. It is
not an oversimplification to note that numerical methods often amount to efficiently projecting an
intractable problem into a tractable linear computation. Since the Gaussian family is closed under
all linear operations, it is, perhaps, no surprise that Gaussian distributions play a central role
in probabilistic re-interpretations of existing numerical methods. In the case of IVPs, Gaussian
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process extrapolation was previously suggested by Skilling [14] as a tool for their solution.
Starting from scratch, Skilling arrived at a method that shares the linear structure of equation (2.8),
but does not have the strong theoretical underpinning of Runge–Kutta methods; in particular,
Skilling’s method does not share the high convergence order of Runge–Kutta methods. But the
probabilistic formulation allows for novel theoretical analysis of its own [41], and new kinds of
applications, such as the marginalization over posterior uncertainty in subsequent computational
steps and finite prior uncertainty over the initial value [42]. A considerably vaguer but much
earlier observation was made, on the side of numerical mathematics, by Nordsieck [43], who
noted that a class of methods he proposed, and which were subsequently captured in a wider
nomenclature of ODE solvers, bore a resemblance to linear electrical filters. These, in turn, are
closely connected to Gaussian process regression through the notion of Markov processes.

Recently, Schober et al. [44] showed that these connections between Gaussian regression and
the solution of IVPs, hitherto only conceptual, can be made tight. There is a family of Gauss–
Markov priors that, used as extrapolation rules, give posterior Gaussian processes whose mean
function exactly matches members of the Runge–Kutta family. (Thanks to its Markov property,
the corresponding inference method can be implemented as a signal filter, and thus in linear
computational complexity, like Runge–Kutta methods). Hence, as in the other areas of numerics,
there is now a family of methods that returns the trusted point estimates of an established method,
while giving a new posterior uncertainty estimate allowing new functionality.

3. Discussion

(a) General recipe for probabilistic numerical algorithms
These recent results, identifying probabilistic formulations for classic numerical methods,
highlight a general structure. Consider the problem of approximating the intractable variable
z, if the algorithm has the ability to choose ‘inputs’ x = {xi}i=1,... for computations that result in
numbers y(x) = {yi(xi)}i=1,.... A blueprint for the definition of probabilistic numerical methods
requires two main ingredients:

(i) A generative model p(z, y(x)) for all variables involved—that is, a joint probability measure
over the intractable quantity to be computed, and the tractable numerical quantities
computed in the process of the algorithm. Like all (sufficiently structured) probability
measures, this joint measure can be written as

p(z, y(x)) = p(z)p(y(x) | z), (3.1)

i.e. separated into a prior p(z) and a likelihood p(y(x) | z). The prior encodes a hypothesis
class over solutions, and assigns a typically non-uniform measure over this class. The
likelihood explains how the collected tractable numbers y relate to z. It has the basic role
of describing the numerical task. Often, in classic numerical problems, the likelihood is a
deterministic conditioning rule, a point measure.

(ii) A design, action rule, or policy r, such that

xi+1 = r(p(z, y(x)), x1:i, y1:i), (3.2)

encoding how the algorithm should collect numbers. (Here x1:i should be understood
as the actions taken in the preceding steps 1 to i, and similarly for y1:i). This rule can
be simple; for example, it could be independent of collected data (regular grids for
integration). Or it might have a Markov-type property that the decision at i only depends
on k < i previous decisions (for example in ODE solvers). Sometimes, these rules can be
shown to be associated with the minimization of some empirical loss function, and thus
be given a decision-theoretic motivation. This is, for example, the case for regular grids
in quadrature rules [26].
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Table 1. Probabilistic description of several basic numerical problems (shortened notation for brevity). In quadrature,
(symmetric positive definite) linear optimization, nonlinear optimization and the solution of ordinary differential equation IVPs,
classic methods can be cast as maximum a posteriori estimation under Gaussian priors. In each case, the likelihood function is a
strict conditioning, because observations are assumed to be noise-free. Because numerical methods are active (they decide
which computations to perform), they require a decision rule. This is often ‘greedy’: evaluation under the posterior mean
estimate. The exception is integration, which is the only area where the estimated solution of the numerical task is not required
to construct the next evaluation.

problem class integration linear opt. nonlinear opt. ODE IVPs

inferred z z = f ;
∫
f (x) dx z = A−1; Ax = b z = B= ∇∇ᵀf z′(t)= f (z(t), t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

classic method Gaussian quad. conjugate gradients BFGS Runge–Kutta
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(z) GP (f ;μ, k) N (A−1; M, V) GP (z;μ, k) GP (z;μ, k)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(y | z) I(f (xi)= yi) I(yi = Axi) I(yi = Bxi) I(yi = z′(t))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

decision rule minimize post.
variance

gradient at est.
solution

gradient under est.
Hessian

evaluate at est.
solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The aforementioned results show that classic, base-case algorithms for several fundamental
numerical problems can be cast as maximum a posteriori inference in specific cases of this
description; typically under Gaussian priors, and often under simple action rules, such as uniform
gridding (in quadrature) or greedy extrapolation (in linear algebra, optimization and the solution
of ODEs). Table 1 gives a short summary.

(b) Current limitations
Numerical methods have undergone centuries of development and analysis. The result is a
mature set of algorithms that have been ingrained in the scientific tool-set. By contrast, the
probabilistic viewpoint suggested here is an emerging area. Many questions remain unanswered,
and many aspects of practical importance are missing: formal analysis is at an early stage. Efficient
and stable implementations are still in development. Convincing use-cases from various scientific
disciplines are only beginning to emerge. We hope that the reader will take these issues as a
motivation to contribute, rather than a hold-up. As the use of large-scale computation, simulation
and the use of data permeate the quantitative sciences, there is clearly a need for a formal theory
of uncertainty in computation.

(c) New paths for research
In our opinion, the match between probabilistic inference and existing numerical methods lays
a firm foundation for the analysis of probabilistic numerical methods. We see two primary,
complementary goals, as follows.

Firstly, implicit prior assumptions can now be questioned. This could be done in an
‘aggressive’ way, in the hope of finding either algorithms with faster convergence on a smaller set
of problems satisfying stronger assumptions (as in the quadrature example of §3b). Conversely,
a ‘conservative’ re-definition of prior assumptions might improve robustness at increased
computational cost. A particularly important aspect in this regard is the action rule r. Wherever r
is a function of previously collected ‘data’ (known as adaptive design in statistics and active learning
in machine learning), a bias can occur. Where the collected data also influence the result of future
actions (as in ODE solvers), a more severe problem, an exploration–exploitation trade-off, can arise.
Checking for such biases, and potentially correcting them, can increase computational cost. But
in some applications that require high robustness this effort can pay off.

Secondly, the modelling assumptions, in particular the likelihood, can be extended to
increase the reach of existing methods to new settings. A first point of interest is the explicit
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modelling of uncertainty or noise on the evaluations themselves. This generalization, which
would be challenging to construct from a classical standpoint, is often straightforward once
a probabilistic interpretation has been found. It may be as simple as replacing the point-mass
likelihood functions in table 1 with Gaussian distributions. A prominent case of this aspect is the
optimization of noisy functions, such as arises, for example, in the training of large-scale machine
learning architectures from subsets of a large or infinite dataset.

Other ideas, such as the propagation of knowledge between problems, as in figure 3, are just
as difficult to motivate and study in a classic formulation, but suggest themselves quite naturally
in the probabilistic formulation.

There are also practical considerations that shape the research effort. Gaussian distributions
play an important role, at least where the inferred quantity is continuous valued. This is not
incidental: to a large degree, the point of a numerical method is to turn an intractable computation
into a sequence of linear computations. The Gaussian exponential family is closed under linear
projections, thus ideally suited for this task.

Efficient adaptation of model hyper-parameters is crucial for a well-calibrated posterior
measure. Models with fixed parameters often simply reproduce existing analytic bounds; only
through parameter adaptation can uncertainty be actively ‘fitted’. Doing so is perhaps more
challenging than elsewhere in statistics because numerical methods are ‘inner-loop’ algorithms
used to solve more complex, higher level computations. It is important to find computationally
lightweight parameter estimation methods, perhaps at the cost of accepting some limitations in
model flexibility.

Although the fundamental insight that numerical methods solve inference problems is not
new, the study of probabilistic numerical methods is still young. Recent work has made progress,
exposing a wealth of enticing applications in the process. We conclude this text by highlighting a
most promising, if distant, application motivating ongoing research.

(d) A vision: chained numerical methods communicating uncertainty
Fuelled by ubiquitous collection and communication of data, several academic and industrial
fields are now interested in systems that use observations to adapt to, and interact with, their
data source in an autonomous way. Figure 4 shows a conceptual sketch of an autonomous
machine aiming to solve a given task by using observations (data) D to build a probabilistic model
p(xt | D, θt) of variables xt that describe the environment’s dynamics through model parameters
θt. The model can be used to predict future states xt+δt as a function of actions at chosen by
the machine. The goal is to choose actions that, over time, maximize some measure of utility
that encodes the task. This requires a sequence of numerical steps: inference on x requires
marginalization and expectations, i.e. integration. Fitting θ involves optimization. Prediction of
xt+δt may entail solving differential equations. All three areas have linear base cases (inference
in linear regression, optimization of quadratic functions, the solution of linear ODEs). The
combination of a sequence of ‘black-box’ numerical methods in such automated set-ups gives
rise to new challenges. Each method receives a point estimate from its precursor, performs its
local computation (and adds its local error), and hands the result on. Errors can accumulate in
unexpected ways along this chain, but modelling their accumulation provides value: it may be
unnecessary to run a numerical method to convergence if its inputs are already known to be only
rough estimates.

Specifically, numerical methods allowing for probabilistic inputs and outputs turn the sketch
of figure 4 into a factor graph [45], and allow propagation of uncertainty estimates along the chain
of computation, through message passing [46]. This would identify sources of computational
error, allowing: the active management of a computational budget across the chain; the dedication
of finite computer resources to steps that dominate the overall error; and the truncation
of computations early once they reach sufficient precision. Uncertainty propagation through
computations has been studied widely before ([47] gives a review), but the available algorithms
focus on the effects of set-up uncertainties on the outcome of a computation, rather than the
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Figure 4. Sketch of an autonomous system, collecting data to build a parametrized model of the environment. Predictions
of future states from the model can be used to choose an action strategy. If intermediate operations are solved by numerical
methods, both computational errors and inherent uncertainty should be propagated across the pipeline to monitor and target
computational effort.

computation itself. This new functionality explicitly requires calibrated probabilistic uncertainty
at each step of the computation, at runtime. Classic abstract convergence analyses cannot be used
for this kind of estimation.

4. Conclusion
Numerical tasks can be interpreted as inference problems, giving rise to probabilistic numerical
methods. Established algorithms for many tasks can be cast explicitly in this light. Doing so
establishes connections between seemingly disparate problems, yields new functionality and
can improve performance on structured problems. To allow interpretation of the posterior as a
statement of uncertainty, care must be taken to ensure well-calibrated priors and models. But
even where the uncertainty interpretation is not (yet) rigorously established, the probabilistic
formulation already allows for the encoding of prior information about problem structure,
including the propagation of collected information among problem instances, leading to
improved performance. Many open questions remain for this exciting field. In the long run,
probabilistic formulations may allow the propagation of uncertainty through pipelines of
computation, and thus the active control of computational effort through hierarchical, modular
computations.
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