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On Waves in an Elastic Plate. 121

way, the most important type of longitudinal vibrations in a cylindrical 
rod.

6. The modes of vibration so far obtained include all the more interesting 
types, from the physical point of view, of the symmetrical class; but there 
are, of course, an infinity of others. These correspond to the higher roots of 
the equation (30). Thus when n — 0T we easily find the approximate 
solutions

For n =  0"2 

For n =  0*3

©/£•7T =  22-47, 42-47, 62-47, ....

co/j^ir =  12*28, 22-28, 32-48, ....

(37)

(38)

m j\ir  — 8*72, 15-39, 2 2 0 5 ,. . . ;  (39)
and so on.

In these modes the plane xy is mapped out into rectangular compartments 
whose boundaries are lines of displacement. This may be illustrated by the 
case of n =  1, when the internal compartments are squares. This happens to 
be particularly simple mathematically. The formula (34) for 'F is now 
indeterminate, but is easily evaluated. I t  is found from (30) that for 
small concomitant variations of <o and n about 1 we have (con) =  0 
This leads to

vF =  sin %y (40)

with |  =  (2s+ 1 ) tt/ 2/, (4 i)

where s is an integer. The configuration is shown in fig. 4 for the case
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122 Prof. H. Lamb.

s = l ;  but it is to be observed that the dotted lines in the diagram all represent 
planes which are free from stress, and that consequently any combination of 
them may be taken to represent free boundaries. This particular solution is, 
moreover, independent of the hypothesis of incompressibility* The surface- 
conditions (11) are, in fact, satisfied by

A =  0, ! 2- /3 i2 =  0, cos f t / = 0 ,  (42)

which lead again to (40) and (41).
As n is increased the compartments referred to become more elongated. 

Por large values of n, and consequently small values of co or £ /  we have in 
the limit nco = sir, where s is integral. I t  is otherwise evident that the 
surface conditions are satisfied by

A =  0, £ =  0, sin f t / = 0 ,  (43)

whence <p =  0, f t  =  B sin (s Try//). (44)

The vibration now consists of a shearing motion parallel to x, with 2s 
nodal planes symmetrically situated on opposite sides of 0. The 
frequency is given by

(45)S27T2

PP

Asymmetrical Modes.

7. When the motion is anti-symmetrical with respect to the plane 0 we
assume

=  A sinh ay . f t  B cosh f t /  (46)

where a, ft are defined as before by (7). This gives for the stresses a t the 
planes y =  + / ,

i W  H =  ±  {A (P  +  f t )  sinh a / — B 2 7 f/3 sinh f t" }
PxijI y  =  {A 2 icosh a /+  B ( | 2 -f f t )  cosh /?/} J

These surfaces being free, we deduce

ta n h /3 /_ ( P + f t ) 2 
tanh a f  4 £2«/3 (48)t

* It was noticed long ago by Lam6 as a possible mode of transverse vibration 
(uniform throughout the length) in a bar of square section, ‘ Theorie mathematique 
de l’elasticit6,’ 2nd ed., p. 170.

There is an analogous solution in the case of the symmetrical vibrations of a cylindrical 
rod. The surface-conditipns given on p. 277 of Love’s ‘ Elasticity ’ (equation (54)) are 
satisfied by

A =  0, J  i  (ic'ct) = 0, 2y2 =  jo2p.//x. 

In the notation of this paper the latter two conditions would be written
J /  (/3ft -  0, 2£2 =  k-.

+ ( f .  Eayleigh, loc. cit.
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On Waves in an Elastic Plate. 123

When the waves are infinitely short this reduces to the form (16) 
appropriate to Rayleigh waves.

In the case of long flexural waves «/, fif, are small. W riting 

tanh a f =  a/ ( l - | « 2/ 2), ta n h /? /=  / 9 / ( l - i / 3 2/*),

we find k2 =  i(1 -  £4/ 2> (49>

on the supposition that k2/ £2, h2 j  £2 are small, which is seen to be verified. 
This makes

=  (50)

in agreement with the ordinary approximate theory.
I t  may be pointed out in this connection that Fourier’s well-known 

calculation* of the effect of an arbitrary initial disturbance in an infinitely 
long bar is physically defective, in that it rests on the assumption that the 
formula analogous to (50) is valid for all wave-lengths. As a result, it makes 
the effect of a localised disturbance begin instantaneously at all distances, 
whereas there is a physical limit, viz. s/ { (X + 2/n) fp},  to the rate of propaga­
tion.

8. For the purpose of a further examination we assume the substance of the 
plate to be incompressible, so that « =  £, and write /3 =  as before. The 
equation (48) becomes

tanh mo) _  (1 +  m2)2 / _ 1 ^
tanh w 4m }

where o* = £/. The wave-velocity is given by (23).
Since mmust be less than unity, whilst the second member of (51) exceeds 

1 if m <  0*2956, it appears that for real solutions we are restricted to values 
of m between 0*2956 and 1. A series of values of u> corresponding to values 
of m within this range is given on the next page.

The displacement-function is found to be

■'F =  {(1 +  m2) cosh mo* cosh — 2 cosh o* cosh e&*. (52)

The forms of the lines ,'F =  const, for the case of

m =  0*9, o* =  0*435, moo =  0*392, V /2  7*22,

are shown in fig. 5, for a range of half a wave-length. Regarded as belonging 
to a standing vibration, they indicate a rotation of the matter in the neigh­
bourhood of the nodes, about these points.

* See Todhunter, ‘History of the Theory of Elasticity,’ vol. 1, p. 112 ; Rayleigh, 
Theory of Sound,’ vol. 1, art. 192.

*
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124 Prof. H. Lamb.

Table II .—Asymmetrical Type. X =  oc .
[The unit of V is vXa/p).]

m. a*. * 72/ - V .

0 -2956 00 0-0 0 -9554
0 30 8*84 0-356 0 954
0*35 4-20 0-748 0-937
0*40 3-028 1 -038 0-917
0-45 2-379 1 -321 0-893
0-50 1 946 1 -614 0-866
0-55 1-627 1 -931 0 -835
0*60 1 -377 2-282 0-800
0 65 1 '171 2 -683 0-760
0-70 0-995 3 157 0-714
0-75 0-841 3-736 0-661
0-80 0-700 4-45 0-600
0-85 0-563 5-58 0-527
0-90 0-435 7 -22 0*436
0-95 0-300 10 -5 0-312
1 -o o - o 00 o  •0*

* For small values of $ /  the value of V is given by equation (50).

F ig. 5.

So far it has been supposed that k <  and consequently that m is real. In  
the opposite case we assume in place of (46)

</> =  A sinh e^x, B cos
and the period-equation is

tan f t / _  ( P - /3 i2)2
tanh a4f  «/3i

where fix is defined by (26).
In the case of incompressibility this becomes

(53)

(54)

tan nm _   (1 — n2)2
tanhw 4

(55)

where co =  f / ,  n =  /3i/£. As the preceding investigation (summarised in
Table II) evidently covers all the modes in which v has the same sign 
throughout the thickness, the additional modes to which this equation relates 
may be dismissed with the remark that they are analogous to those referred
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On Waves in an Elastic Plate. 125

to in § 6 above. The particular case 1 is illustrated by fig. 4 if we 
imagine the lowest horizontal dotted line to form the lower boundary.

Influence of Compressibility.

9. Although the hypothesis of incompressibility has been adopted for 
simplicity, the numerical calculations, so far as the more important modes 
are concerned, are not much more complicated if we abandon this restriction. 
I t will be sufficient to consider the case of the symmetrical types.

We have from (4) and (7)

* k2- l i 2
_  ( X +  2 / jL)a2 — yli/32

X  - |-ya
(56)

Hence if we write
o f =  0), /3 — mot, (57)

the equation (12) takes the form

tanh mct> _  A m ( X  +  /i) ( X  +  2 — (58)tanh w (X +  2yu +  m2X)2

The relation of eo to the wave-length is given by

£2/2 __ ( X  +  2 yLt — m2fJb) (O2
^ ' X  +  yU (59)

whilst the wave-velocity is given by (20).

4 or numerical illustration, we may adopt Poisson’s hypothesis as to the 
relation between the elastic constants. Putting, then, X =  yu,, we have

tanh ma> 8 m (3 —m2)
tanh (o (3 +  m2)2 ’ ^

f / = \ / ( ! ( 3 - ™ 2))*>, V* =  3 (1 - toS)m (61)
6 —rn* p x 7

Peal values of m must lie between 0 and 0'4641, this being the positive 
root of the equation

m3 +  9m2+15 m —9 =  0 (62)

obtained by equating the second member of (60) to unity. The wave- 
velocity corresponding to this latter value of m is

V =  0-9194 y/O i/p), (63)

in accordance with the theory of Rayleigh waves, the wave-length being now 
infinitely small compared with the thickness.
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126 Prof. H. Lamb.

When m is imaginary ( =  in), we have
tan nw_ 8 (3 +  %2) .s
tanhw (3

f / = V / [ l ( 3 + « s)]a,, V 2 =  3 31+V ) 7  (65)

The more important modes coming under these formulae are determined by 
the lowest root of (64) for values of n  ranging fro'm 0 to ^15, this latter 
number corresponding to an infinitesimal value of o>, i.e. to waves of infinite 
length.

Numerical results are given in Table II I , and the relation between 
wave-length and wave-velocity is shown by the curve B in fig. 1 (p. 119). The 
unit of the vertical scale is Y/v/C^P-1) as before.

Table II I .—Symmetrical Type. X =  
[The unit of Y is v V /p )- ]

m . n . <JU. Y / 2f .
\

y .

0 *4641 00 o-o 0 -9194
0*45 — 5-220 0-509 0-925
0*40 — 3 -807 0-692 0 -942
0-35 — 3-343 0-784 0-956
0 ‘30 — 3 -085 0-844 0-969
0 ‘25 — 2-918 0-888 0-978
0*20 — 2-805 0-921 0-986
0 *15 — 2-727 0-944 0-992
0*10 — 2-678 0-959 0-997
0*0 o-o 2-640 0-972 1-0

— o- i 2-604 0-983 1 -003
— 0-2 2 -506 1-017 1 -013
— 0-4 2-214 1-129 1 -049
— 0-6 1 -911 1 -268 1 -102
— 0-8 1 -649 1 -412 1 -163
— 1-0 1-432 1 -551 1 -225
— 1 -2 1-253 1 -683 1 -284
— 1-4 1 -105 1 -805 1 -338
— 1 6 0-979 1 -924 1 -386
— VS 0-907 2-0 V2
— 1 8 0-872 2-04 1 -428
— 2-0 0-778 2 16 1 -464— 2*2 0-696 2 -28 1 -495
— 2-4 0-620 2-42 1 -522
— 2 -6 0-551 2-58 1 -544— 2-8 0-486 2-78 1 -564
— 3-0 0*422 3 -04 1-581
— 3-2 0-359 3 *40 1-596— 3-4 0*292 3-99 1 -609— 3 '6 0-216 5-15 1-620
— 3-8 0-109 9-8 1 -630

a/ 1 5 o-o 00 1 -633

As n increases from 0, the modes corresponding to the higher roots of 
(64) have at first the same general character as in the case of incompressibility
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(§ 6). When n =  3, we have the division into square compartments, to
which fig. 4 refers. When n is infinite, whilst nco is finite, we have

« =  0, fa  f  = n w  =  sir, =  stt/^ /2 . (66)
I

A reference to (11) shows, in fact, that, independently of any special 
relation between the elastic constants, the boundary conditions are satisfied 
by a =  0, sin/?i/  =  0,
and A ( P - /3 12) +  2 B ^ 1cosstt =  0. (67)

This leads to

There is here a transition to the case where a, as well as 0, is imaginary. 
Writing

«!a =  Aa- f a, 0  !2 =  P - P ,  (69)

and assuming (for the case of symmetry)

4> =  A cos ctxy e^x, ^  =  B sin 0 xy (70)
the period-equation is found to be

Since

tan 0 i f  _ . .  4 P « i/9i 
tan ax] (/3i2—f 2)2' (71)

, s _  W - f t . 1 _  +
? B - h ? (72)

we find, writing ft •X II 8 "CD l—1 X II 8 (73)

Also

tail qa> -  A ( \  \ q ( \
tan (o (q2 +  X +  2 '(74)

Z2 p  T n  ( x +  2

y s _(A.+2/7) (q2 1)
(X +  2 p

On Poisson’s hypothesis these become

(75)

tan qco_ —8q(q2 
tan &) (q2+ 3)2 ’ (76)

f /  =  V W - 3 ) ] < » ,  V2 =  3 ^ - y .q2- 3  p (77)

The value of q may range downwards from oo to y/3.
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128 On Waves in an Elastic Plate.

A minute examination of these modes would be laborious, and would 
hardly repay the trouble. In the extreme case where =  y '3 , the 
equation (76) is satisfied by either a zero value of tan or an infinite value 
of tan (o. The former alternative gives the shearing motions parallel to 
already referred to at the end of § 6 (equations (43) and (44)). The other 
alternative gives a vibration at right angles to x. I t  is, in fact, obvious 
from (11) that the conditions are satisfied by

inr
c ii © W II © cos a-if =  0, (78)

whence <f> =  c o s ( 2 s + l ) - ^ ,
4/

=  0, (79)

a-3 =  ( s  + h ) 2j 2
X -(- 2 fJb

P
(80)

'When q slightly exceeds -y/3, we have modes of vibration resembling the 
above types, except for a gradual change of phase in the direction of x. 
The corresponding values of V, as given by (77), are very great, but it is to 
be remarked that the notion of “ wave-velocity ” is in reality hardly 
applicable (except in a purely geometrical or kinematical sense) to cases of 
this kind, and that results relating to modes lying outside the limits of the 
numerical Tables are more appropriately expressed in terms of frequency.* 
As already remarked, there is a physical limit to the speed of propagation of 
an initially local disturbance.

* Of. 1 Hydrodynamics,’ art. 261, where a similar point arises.
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