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The influence of disorder on deformations in
semiflexible networks

BY JAMIE R. BLUNDELL* AND EUGENE M. TERENTJEV

Cavendish Laboratory, University of Cambridge, Cambridge, UK

We present a model that assesses the different elastic responses of a semiflexible network,
which either (i) is constrained to deform in an affine way or (ii) is permitted to thermally
fluctuate and deviate from affine response. The thermal, non-affine response of the
network is achieved using a Metropolis Monte Carlo algorithm with dynamic step size.
We find that non-affine deformations soften the network dramatically at low strains
and make the eventual nonlinear strain stiffening far more pronounced. We show that
the effect of these non-affine deformations are very sensitive to the degree variation in
the lengths of filaments connecting cross-links. Where there is high variation, non-affine
deformations allow internal stresses to relax, giving rise to a smaller range of tensile forces
in filaments and a dramatic reduction of network stiffness. This highlights that non-affine
deformations are crucial in small strain response of stiff polymer networks.
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1. Introduction

Semiflexible polymer networks are collections of stiff filaments that are physically
connected to one another via chemical cross-links or entanglements. The elasticity
of these networks has wide-ranging implications, particularly in biology—the
cytoskeleton of eukaryotic cells (Alberts et al. 1994; Fernandez & Ott 2008),
the extracellular matrix (Rosenbloom et al. 1993; Wen et al. 2007) and the fibrin
network in blood clots (Weisel 2004; Guthold et al. 2007; Wen et al. 2007)—are
all semiflexible networks. The elasticity of these systems is complex, the response
of a single filament depends on the response of all filaments connected to it,
hence there are many interactions. These interactions most often mean that one
must invoke assumptions about how the network responds to an imposed strain
to make analytical progress. Models of conventional elastomer networks (e.g.
rubbers) assume that the strain field is affine, which is to say that it is everywhere
homogeneous and the same as that applied to the bulk. This assumption is
remarkably successful for rubbers, correctly predicting the elasticity for a large
range of strains, see Flory (1969), Deam & Edwards (1976) and Treloar (2005).

The affine strain assumption may not however be a physically sensible
assumption for semiflexible networks as highlighted by Head et al. (2003), Onck
et al. (2005) and Heussinger et al. (2007). Semiflexible networks are composed
of much stiffer polymers, which typically bend only weakly owing to thermal
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fluctuations, hence such networks resemble scaffolds rather than the melts
typical of rubbers (see, for example, Gardel et al. 2004a for microscopy images).
This bending rigidity can be cast in terms of a length scale (the persistence
length lp), which measures the correlation length of tangent vectors along the
chain backbone. For semiflexible polymers, this length lp ≈ L, where L is the
typical length of filaments. The interplay of these two length scales produces
many of the non-trivial properties of semiflexible chains, in particular a highly
nonlinear free energy as a function of extension, as in Fixman & Kovac (1973),
Wilhelm & Frey (1996) and Blundell & Terentjev (2009). This means that given
a distribution of initial filament lengths, the shorter ones will cost much more
in free energy to stretch by the same factor compared with longer ones. Under
these circumstances, one might wonder whether the affine strain will not vastly
overestimate the stiffness of the network.

There are two further physical concerns associated with the affine strain
assumption. Firstly, it only allows one to consider the stretching of a filament
between cross-links and does not allow the possibility that filaments can bend at
a cross-link. Such a concern has indeed been the subject of some recent research
(Head et al. 2003; Onck et al. 2005; Heussinger et al. 2007; Huisman et al.
2008), where the effect of a bending deformation over stretching is shown to be
crucial to understanding small strain elasticity. Secondly, under the affine strain
assumption, the cross-links connecting filaments are not allowed to fluctuate
thermally, an effect that recently has shown to be important in understanding
the large strain properties of conventional elastomers (Xing et al. 2007). One
might legitimately ask whether these effects will also be important in semiflexible
networks. The importance of non-affine deformations is not limited to cross-linked
semiflexible filaments either. It has been shown, for example, in Lieleg et al. (2007)
that non-affine deformations dominate the mechanical response of bundled actin
filament networks too, and so an investigation of the effect of non-affinity is timely.

In this paper, we develop a Metropolis Monte Carlo algorithm that calculates
the elasticity of a model network allowed to find its true thermal equilibrium
in three dimensions, given an imposed strain. That is, the nodes in the network
(representing the cross-links) are permitted to move in a non-affine way, and
allowed to thermally fluctuate. Our model network is of course a simplification,
but it explicitly allows us to independently vary the energy cost of stretching
filaments and the energy cost to bend around cross-links. It therefore enables us
to examine how these factors affect the influence of non-affine deformations on
network elasticity. We point out that this is still very much a theoretical approach
and that true experimental systems have important complications, such as the
kinetic unbinding of cross-linkers (Lieleg & Bausch 2007) and finite cross-linker
stretch modulus (Broedersz et al. 2008), which we do not treat here. Analytical
work on non-affine deformations in semiflexible networks has been attempted
successfully, but is often confined to two dimensions (Heussinger et al. 2007;
Mizuno et al. 2007) and, while simulations of networks in three dimensions have
also been studied, none of the works examine the effect of thermally fluctuating
cross-links. We use this model to investigate the effect both non-affine strains
and thermally fluctuating cross-links have on the elasticity of the network by
comparing with the elasticity of the same network that has been assumed to
deform homogeneously. We find that both effects soften the network at small
strains, but make the eventual nonlinear response more dramatic at larger strains.
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2. Model network

The network is modelled as a collection of N 3 nodes. The nodes are initially
placed on a regular N × N × N cubic lattice (figure 1a). Each node is uniquely
identified by a triad of integers (i, j , k), which is the position vector of the lattice
point at which it is initially placed. In general, the position of the (i, j , k) node
will not, however, be (i, j , k) since the node is allowed to move. The (i, j , k) acts
simply as a convenient label.

Connections in the network (representing the physical filament connections) are
formed between the (i, j , k) node and all of its six nearest neighbours (i + 1, j , k),
(i − 1, j , k), etc., with the exception that if the node initially lies on one, two or
three of the exposed faces of the lattice then the number of nearest neighbours
will be fewer—namely five, four or three, respectively. This means that an N ×
N × N network will have 3(N 3 − N 2) connections (each of the N 3 nodes has three
connections; however, since the three faces at i = N , j = N and k = N will have
counted N 2 connections, which do not belong to the network, we subtract these).
Each one of the connections in the network—which we label with the index q—
will have a separation R(q). While on the lattice points, all R(q) = 1, so that we
have taken our unit of length to be the lattice spacing. This completely defines
the topology of the network.

The chosen case of z = 6 whereby internal nodes connect to six others represents
the marginally rigid case in that the Maxwell counting condition (Maxwell
1864a,b) for rigidity yields zero free degrees of freedom. Although few physical
networks possess such coordination, this is an interesting test case since it lies
on the line between floppy and rigid and under shear is predicted to have a zero
shear modulus at zero strain (Thorpe & Duxbury 1999).

The positions of all the nodes, excluding those in the top and bottom layers
(k = 0 and k = N ) are then shifted from the lattice sites by adding a Gaussian
smear about their original lattice site positions (di, dj , dk), which are random
variables drawn from a Gaussian of zero mean and variance a2:

r ijk = (i, j , k) + (di, dj , dk). (2.1)

These r ijk define the initial, zero energy state of the network. The separations
between nodes in the network after this process will also be Gaussian distributed
according to

P(R) = 1√
4pa

exp
(

−(R − 1)2

4a2

)
, (2.2)

where the variance in the spans is twice that in the positions because spans are
formed from the difference in two positions. The mean separation between nodes
is always unity.

In this initialized state, we label the spans R0(q) to emphasize that these
separations are the ones that give a minimum free energy (taken to be zero). The
top and bottom layers of the network are left unchanged because throughout the
entire algorithm these surfaces are where the strain is applied. Strictly speaking,
therefore, the connections in the layers k = 0 and k = N are distributed with a
variance of a2 as opposed to 2a2 as in the bulk of the network. Physically one
can think of the nodes in the top and bottom layers as being rigidly grafted to
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(a) (b) (c)

Figure 1. (a–c) Networks with N = 5 with randomness parameters a of (a) 0.0, (b) 0.5 and (c) 1.0.

two external plates which impose the deformation. The parameter a is a measure
of the quenched disorder in the initial separations between nodes in the network
(figure 1a–c).

The square lattice is anisotropic, and this anisotropy will remain even in the
networks with non-zero a since there is still long range correlation in positions.
However, we are considering only one form of deformation in this work (shear
deformations), so the reader should bear in mind that what applies for shear in
this paper could potentially be different if we consider other modes of deformation
(e.g. extension) since the network is inherently anisotropic.

(a) Network energy

With the initial zero energy state of the system defined, we need a way of
associating energies with any other configuration of the network. This is done
by associating a free energy with every connection in the network and adding
up over all connections. We use the free energy expression from Blundell &
Terentjev (2009), which is valid for stiff filaments and which has the benefit
of being simple and hence computationally fast to evaluate. As an example, the
separation between nodes (i, j , k) and (i + 1, j , k) is R = |r i+1jk − r ijk | and the free
energy associated with that connection would be:

Fe(R)
kBT

= lpp2

L

(
1 − R

L

)
+ L

lpp

(
1 − R

L

)−1

, (2.3)

where the subscript on the free energy is to remind that it comes purely from
considering entropic stretching, and where, as usual, lp = A/kBT and L is the
contour length of the filament connecting nodes (i, j , k) to (i + 1, j , k).

The contour length can be calculated from the initial separation between the
nodes R0 by demanding that the tension in the connection (i, j , k) to (i + 1, j , k)
was initially zero. This is equivalent to demanding that at upon formation of
the network, the free energy in each individual connection is minimum. This
does not allow for initial internal stresses as would be allowed under a so-called
tensegrity structure (see, for example, Brangwynne et al. 2006). Although it has
been shown experimentally that cross-linked networks often possess pre-stressed
regions (Schmoller et al. 2008; Lieleg et al. 2009), considering such effects would
inevitably lead to having to assume an initial pre-stress distribution, which
would depend strongly on material preparation. To our minds, it is therefore
Proc. R. Soc. A
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more physically sensible and simpler to assume a completely relaxed network.
Furthermore, requiring zero tension in each connection yields an expression for L
in terms of R0

L = lpp3/2

2

(
1 −

√
1 − 4R0

lpp3/2

)
. (2.4)

This method of calculating L given a separation R0 breaks down when R0 >
p3/2lp/4 ≈ 1.39lp. The reason being that beyond this point the minimum free
energy occurs for R0 = 0, which makes L undefined. We therefore restrict ourselves
to stiff filaments whereby lp � R0, which is self-consistent because the formula
(2.3) is only valid in this limit, as discussed in Blundell & Terentjev (2009). Given
a set of initial node positions, is it therefore possible to calculate the contour
lengths of all connections in the network this way?

One issue with equation (2.3) is that it diverges as R/L → 1. This difficulty
has been discussed in detail in Kierfeld et al. (2004) and Blundell & Terentjev
(2009), and the resolution adopted here is based on a similar argument. In short,
the divergence is unphysical for filaments with R/L → 1 because at some point
there is a cross-over to a region whereby it becomes energetically favourable to
mechanically stretch the filament and the assumption of rigid in-extensibility
must break down. To account for this effect, we define a sharp cutoff extension
xc = Rc/L, which is the extension at which the entropic stretching stiffness
Ke(x) = 2kBT/(lpL(1 − x)3) becomes higher than the mechanical stiffness of the
filament km = (E/L)

∫
dS (here, the integral is over the cross-sectional area of the

filament and E is Young’s modulus, see, for example, Landau & Lifshitz (1986)).
For R/L > xc, the energy is simply that of pure mechanical stretch:

F(R) = Fe(R) for R < Rc (2.5)

and

F(R) = Fe(Rc) + 1
2
km(R − Rh)2 for R > Rc, (2.6)

where Rh is defined by matching the force across the boundary at R = Rc. That is,
at the point of cross-over Rc, both the force and the gradient of the force (stiffness)
are continuous. Given the contour lengths of all connections in the network,
the free energy of the entire network with conformation {r ijk} is calculated
by working out the set of all separations between nodes R(q), calculating the
energy associated with each connection using equation (2.6) and summing over
all q connections.

F =
∑

q

F(R(q)) − F(R0(q)), (2.7)

where q labels all connections in the network and we draw the reader’s attention
to the notational difference between F the free energy of a single filament, and
F , the free energy of a network. By subtracting the energy of the initial state, we
ensure that the energy in the initial, undeformed state of the network is zero. It is
important to point out here that equation (2.7) assumes no interaction between
connections—for example, does not (yet) account for a bending energy across a
node. We examine the effect of including bending energies in §7.
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Calculating the free energy of the network as a function of imposed strain,
under the assumption of affine strain, is now straightforward. We deform all
nodes in the network by the same deformation gradient L so that

R(q, L) = LR(q), (2.8)

for all connections q. The resulting free energy of the network will be given by

F (L) =
∑

q

F(R(q, L)) − F(R0(q)), (2.9)

which is easily calculated.
The true free energy of the network that is allowed to thermally fluctuate

and deform non-affinely is obtained using the following Metropolis algorithm, as
in Metropolis et al. (1953), combined with dynamic updating of the trial step
size to achieve faster convergence as discussed in Frenkel & Smit (1996). We
choose to calculate the true free energy including thermal fluctuations for two
reasons: firstly, the effect of thermally fluctuating cross-links has been shown
to be important, and, secondly, because the energy landscape of the network is
rugged, hence a simple energy minimization algorithm may not in fact find an
equilibrium area of phase space.

1. Deform all nodes under an affine strain so that r ijk(L) = Lr ijk for all nodes
(i, j , k).

2. For all nodes, except those in the top and bottom layers (k = 0 and k = N ,
which are held fixed), we form a trial state by making a small Gaussian
smear about the current positions r ′

ijk(L) = r ijk(L) + dr ijk , where dr ijk is
a vector where each component is drawn from a Gaussian distribution
with zero mean and a variance s2 (which we dynamically update, see, for
example, Frenkel & Smit (1996)).

3. Calculate the energy of both the original state F and the energy of the
trial state F ′.

4. Accept the trial configuration with probability given by the ratio of the
statistical weights of each state p = exp[(F − F ′)/(kBT )], where if F −
F ′ > 0 then p = 1.

5. Record the statistical weight of the current state exp(−F/kBT ) and add
it to the total statistical weight of all trials so far Z = Z + exp(−F/kBT ).
This forms an estimate for the partition function.

6. Repeat steps 2–5.

The free energy for a given imposed strain is then calculated via

F (L) = −kBT ln Z (L). (2.10)

As with all Metropolis Monte Carlo algorithms, we must be careful to discard
trials before the algorithm converges on the desired region of phase space. The
minimum number of trials one must discard, Wmin, before equilibrium statistics
recorded is estimated by looking at a physical quantity, in this case, the average
energy (figure 2) and looking for the number of trials after which there is no
change in the physical quantity with increasing trial number. In this case,
Wmin ≈ 106. Beyond this point, we are in equilibrium and so can begin recording
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Figure 2. Plot of the average energy of the network as a function of the log of the total number of
trials in the simulation W . This is for a network with N = 5, subject to a strain of e = 0.25 with
a = 0.5. Note that convergence happens after Wmin ≈ 106.

statistics. The variance of the trial steps is updated every 30 trials by 5 per
cent so as to drive the algorithm towards an acceptance probability of p ≈ 0.5 as
discussed in, for example, Frenkel & Smit (1996).

3. Affine deformation

We now examine the effect quenched disorder in initial filament separations a
has on the elasticity of our semiflexible filament network. We restrict ourselves
initially to considering shear deformations, although the algorithm can handle
any form of deformation in principle. In this case, the deformation gradient
tensor is

L =
(1 0 e

0 1 0
0 0 1

)
. (3.1)

We initially consider the free energy and modulus of the network as a function of
applied strain assuming that the strain field is affine, with the view to comparing
it to non-affine deformations, which we do in §4.

In figure 3, we plot the free energy density and in figure 4, the modulus as
a function of imposed affine strain. The units used for the free energy per unit
volume and hence the modulus are kBT/L3. For a network composed of rod
of length 1 mm at room temperature 1(kBT/L3) ≈ 0.1 Pa. The modulus and free
energy are plotted for the three networks shown in figure 1 with N = 5, composed
of filaments with lp/L = 5 (here L is the mean length of connections) with a = 0.0
(filled squares), a = 0.5 (open circles) and a = 1.0 (open squares).

For a = 0 at small strains, the free energy scales like F ∼ e4. This agrees with
what we would expect. Under the affine shear strain applied, for zero disorder
only vertical connections are stretched (those connecting adjacent k points like
(i, j , k) to (i, j , k + 1)). For small shear strains, a vertically oriented filament will
be stretched by R − R0 ≈ 1/2e2. Since the free energy is a minimum at R = R0,
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


8 J. R. Blundell and E. M. Terentjev

 on August 16, 2018http://rspa.royalsocietypublishing.org/Downloaded from 
0.01 0.1

~ e4

e

~ e2

0.5

104

102

100

10–2

10–4

F

Figure 3. Free energy density of three networks with N = 5, composed of filaments with lp/L = 5
(here L is the mean length of connections) with a = 0.0 (filled squares), a = 0.5 (open circles) and
a = 1.0 (open squares) under the assumption of affine strain.
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Figure 4. Shear modulus of three networks with N = 5, composed of filaments with lp/L = 5 (here
L is the mean length of connections) with a = 0.0 (filled squares), a = 0.5 (open circles) and a = 1.0
(open squares) under the assumption of homogeneous strain.

Taylor expanding the energy about R0 gives a lowest order term, which scales
like F ∼ (R − R0)2 ∼ e4. This means that the modulus (figure 4) goes to zero at
zero strain. This is what we expect since for the chosen cubic geometry with free
hinges, the shear deformation is a floppy mode (completely soft up to first order
in the deformation; Thorpe & Duxbury (1999)).

As one increases the strain, one observes at e ≈ 0.2 a region of dramatic
nonlinear behaviour whereby modulus increases by two orders of magnitude
over strains of 10 per cent. This nonlinearity is a consequence of the individual
nonlinearity in connections and makes quantitative sense. The average filament
length is unity, so if lp/L = 5, using equation (2.4) the average filament will have
an initial extension of x0 ≈ 0.965 and so the divergence of the free energy would
occur at strains where R − R0 ≈ 1/2e2 ≈ 0.035, which corresponds to strains in the
Proc. R. Soc. A
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region of 30 per cent, consistent with figure 3. Beyond these strains, we see the
cross-over to mechanical stretching of the filament whereby the modulus converges
to the same value for all networks.

Increasing the quenched disorder to a = 0.5 alters the physical behaviour of
the network in three important ways. Firstly, the network becomes dramatically
stiffer. Figure 4 shows that the modulus at zero strain is finite, and consistently
approximately two orders of magnitude larger at small strains. This stiffening of
the network is a feature of the affine strain assumption. Increasing the quenched
disorder means that instead of filaments being the same length, some are longer
and some are shorter. Since the free energy function (2.6) is a nonlinear (convex)
function of extension, the shorter filaments are in fact much stiffer than the
longer ones. Assuming all filaments stretch by the same factor owing to affine
deformation, therefore, means that the shorter filaments contribute much more
to the free energy than the longer ones. This results in a stiffening of the network.

The second important feature is that the free energy has a weaker functional
dependence on strain F ∼ e2 in the small strain region as illustrated by the small-
dashed line in figure 3. This quadratic dependence is linear elasticity—the shear
modulus as shown in figure 4 being constant at small strains. This dependence
is understandable because as one increases the disorder in node positions, some
connections will be oriented close to the principal stretch direction of the applied
strain—for the shear deformation applied this is the (1, 0, 1) direction. These
connections will be stretched by a factor DR ∼ e and since the free energy of
each filament remains a quadratic function about R0, the free energy scales like
F ∼ e2. We also note that the nature of the stiffening is not as dramatic as in
the case of zero disorder, which we can attribute to the fact that if we have
distributed lengths but at the same time assume all these filaments deform by
the same factor, they will stiffen at different values of the applied strain e hence
the nonlinear elasticity is spread over a wider value of strains and so stiffening is
smoothed out.

These results extend for a further increase in quenched disorder to a = 1.0.
The network stiffens by an order of magnitude and the nonlinear stiffening
becomes less dramatic. It is comparatively straightforward to see why increasing
the disorder in the network results in stiffer networks under the affine strain
assumption. What is less clear is whether this is a physically sensible assumption
when one has some disorder in the network.

4. Non-affine deformation

For the same three values of the disorder parameter a, we examine the shear
modulus as a function of strain for the same network as in §3 that is now permitted
to deform non-affinely and thermally fluctuate. The important point here is that
all nodes except those in the top and bottom layers can fluctuate away from the
affine positions and are accepted or rejected based on the Metropolis et al. (1953)
algorithm. This means that, given enough trials (Wmin), the positions of the nodes
that the algorithm samples will be those of a truly thermally equilibrated network.
Figure 5 plots the shear modulus for the three thermally equilibrated networks
of increasing disorder and, for comparison, the shear modulus predicted by affine
response from §3. For ease of explanation, we refer to the moduli of networks
Proc. R. Soc. A
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Figure 5. Non-homogeneous modulus for networks with a = 0.0 (filled squares), a = 0.5 (open
circles) and a = 1.0 (open squares) and for comparison the corresponding moduli for homogeneous
strains (solid lines). Increasing the variation of filament lengths actually softens the network when
allowed to deform non-affinely. At very low strains less than 10%, the modulus is noisy as a result
of the fact that it is so soft. That is, the error in the calculated free energies is on the same order
as the genuine shifts in free energy owing to the imposed strain.

allowed to deform non-affinely by GNA, and the moduli of affinely deformed
networks by GA. The modulus (also in units of kBT/L3) is defined as the discrete
second derivative of the free energy

G = F (e + de) − 2F (e) + F (e − de)
de2

(4.1)

for some finite difference de, which in the cases here were taken to be 0.01. The
effect of quenched disorder in filament positions has directly the opposite effect
on the network that is permitted to deform non-affinely compared with ones
constrained to deform affinely. For the case of the perfectly ordered network
a = 0.0, GNA is indistinguishable from GA. This result is reassuring since in such
an ordered system where all connections have the same length, the minimum
in free energy for the network must be a state where all vertical filaments have
stretched by equal amounts. If this were not the case, one connection stretching
more than the average must imply another connection, which stretches less—
since the vertical filaments are fixed at the boundaries. Since all filaments are
initiated in a state of minimum free energy and possess a free energy function
which is convex, in the absence of any quenched variation in filament lengths, a
deformation in which one filament stretches more than the average and another
less will always be higher in energy than the affine strain deformation. This
however is not true for a network with quenched disorder.

As we introduce a variation in filament lengths (beginning with a = 0.5), we
see two significant results. Firstly, contrasting affine and non-affine responses we
see that, for strains up to ≈ 30 per cent, GNA is two or three orders of magnitude
softer than GA. For strains below about 20 per cent, GNA shows only a weak
dependence on strain—changing by at most an order of magnitude—though this
is hard to see from the data because errors in GNA are large when compared
with true variations. Beyond this soft region, up to ≈ 20 per cent strains, is a
Proc. R. Soc. A
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Figure 6. Stiffness–stress relationships for the same networks and data as in figure 5 with increasing
quenched disorder a. The datasets all follow an approximate scaling relationship of G ∼ sn with n

being between 1 and 1.5.

region of dramatic stiffening, with GNA increasing by three orders of magnitude
between strains of 20 and 40 per cent. The affine response in contrast stiffens
more weakly over a larger range of strains. Reassuringly, both moduli GNA and
GA tend to the same value at large strains as one would expect since in this region
the dominant contribution to the modulus comes from mechanical stretching of
filaments. The other significant observation is that GNA for a = 0.5 is consistently
smaller than GNA for a = 0.0. That is, even when we compare two non-affinely
deforming networks, the one with the bigger quenched disorder in positions is
softer—the reverse of the trend for the affine case.

The same trend is seen on a further increase in disorder to a = 1.0. GNA and
GA show a wider disparity and, again, the network is softer than the equivalent
networks with lower values of a.

The influence of non-affine deformations on the modulus–strain relationship
G(e) striking and is a large departure from what one would expect from
affine response, particularly at lower strains. Many experiments on semiflexible
networks report modulus–stress relationships G(s) since it enables one to
disentangle the true elastic response from the viscous response (see Fernandez &
Ott 2008 for a discussion). We plot modulus–stress relationships for the three
networks of increasing disorder in figure 6.

We observe that although the quenched disorder in the network a has a
dramatic effect on G(e), it has almost no effect on G(s). All three datasets
follow an approximate scaling relationship at low stresses of G ∼ sn, with the
value of n lying between 1 and 1.5. This is a significant result since these
scaling relationships have been observed in single fibroblasts (Fernandez et al.
2006) and in vitro networks of actin filaments (Gardel et al. 2004a,b), where
in the latter the results we interpreted as an indication that an affine theory
captures the correct elasticity of semiflexible networks. Here, we observe that
in fact non-affine responses are also consistent with these experimental findings
and that to distinguish between affine and non-affine, one should focus on
G(e) relations.
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5. A scalar measure of non-affinity

We would like to try and understand why non-affine deformations lead to
dramatically softer networks, when there is a quenched disorder in node positions.
Clearly, the idea that strain is distributed homogeneously though the network
does not work well for these stiff filament networks. We hypothesize that perhaps
a more physically sensible picture is one in which the stress is homogeneous. The
picture however is complicated by being in three dimensions. For equilibrium,
the only condition on the stress field is that it should be divergenceless
(Visij = 0)—not necessarily constant. Nevertheless, appealing again to a simple
one-dimensional model, we can understand why constant stress could be
more physical.

If one models the network as a series of springs connected in series then the
force along this line must be constant. For a = 0.0, all filaments have the same
stiffness, hence constant force also means constant extension and the connections
will deform affinely. An increase in the variation of filament lengths (say to
a = 0.5) also increases the variation in filament stiffnesses in a dramatic way
since the stiffness is a highly nonlinear function of length. That is, increasing
a means the network is composed of some much longer (softer) filaments and
an equal number of shorter (stiffer) filaments. In a simple picture where forces
must be constant this would result in the longer, softer filaments stretching more
than the shorter, stiffer ones, and the overall stiffness would be dominated by
the softer filaments as they add in reciprocals. This would explain the observed
softening of the network with increasing a, but it would also predict two important
trends. It would firstly predict that increasing the quenched disorder in the
network should result in larger non-affine deformations. Secondly, even if stress
is not perfectly constant in the non-affine network, it would predict that the
variation in forces observed in the non-affine case should be far less than for the
affine case.

We test both of these predictions. Firstly, we plot a scalar measure of non-
affinity D both as a function of increasing length variation a (figure 7), and as a
function of strain (figure 8). The non-affinity measure D is defined as

D = 〈|〈R(q) − LR0(q)〉T |〉q , (5.1)

where the angled braces subscripted by T refer to ensemble average and
subscripted by q means averaged over all network connections. This measure
is therefore the modulus of the ensemble average deviation of a connection span
from affine response which is then averaged over all connections. It is zero if the
deformation is affine or if the deformation is uniformly distributed around an
affine deformation. Non-zero values of D therefore imply truly non-affine strains.

We do indeed see that as one increases the disorder in the network, the measure
of non-affinity increases. We also see that if there is some quenched disorder in
the positions, then measure of non-affinity increases as one applies larger strains.
This strongly suggests that for networks where there is a quenched disorder in
filament lengths and positions, non-affine deformations are a crucial factor in
the elasticity and enable the network to deform with a far smaller cost in free
energy than would be predicted by the affine theory. Notice that the non-affinity
measure D is non-zero even for the zero-disorder case a = 0. This is seemingly in
Proc. R. Soc. A
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Figure 7. Plots of D, a scalar measure of non-affinity as a function of a for strains of e = 0.0 (filled
squares), e = 0.05 (open circles) and e = 0.1 (open squares) and e = 0.2 (filled diamonds). There
is a clear positive correlation between increasing quenched disorder a and increased measure of
non-affine strains D.
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Figure 8. Plots of D as a function of strain e for a = 0.0 (filled squares), a = 0.5 (open circles) and
a = 1.0 (open squares).

conflict with the previous section where zero disorder was shown to follow affine
response closely. This effect is in fact owing to the non-zero temperature at which
the simulation is run as we discuss in the following section.

Figure 9 plots histograms showing the distribution of forces throughout the
network. We plot the frequency of occurrence n of the logarithm of modulus of
the forces ln |f | in the 300 network connections for a network with a = 1.0, at
increasing values of strain. Note that the force is measured on a log scale, i.e. if
all 300 connections were under equal tension f then there would be a single peak
of height 300 at ln f . On each histogram, we plot the distribution of forces for
affine response (grey) and non-affine/thermal response (white).

The most important observation by contrasting non-affine to affine is that the
variance in the forces is consistently lower for the non-affine case at all strains,
except zero strain. The forces in connections that undergo affine response are,
Proc. R. Soc. A
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Figure 9. Histograms of the frequency of occurrence of values of ln |f | in all 300 network connections.
The network has N = 5 and a = 1.0. The distribution of forces corresponding to affine response is
shown in grey, while non-affine response is shown in white (light grey if plotted over the darker
grey of affine response). Non-affine deformations lead to a narrower distribution in forces. In the
first plot for e = 0, the non-zero temperature means that the thermally fluctuating network has
non-zero forces even when unstrained.

as we would predict, spread over a wider range of values, and in particular
have a longer tail in the high-force limit (a few connections that are subject
to very high forces). Forces in connections are allowed to deform non-affinely
are more strongly peaked at intermediate forces and do not have a long tail
with a small proportion of the network connections carrying very large forces.
This reinforces the point that affine response will overestimate the stiffness of
the network because it assumes all connections deform the same way leading to
some being under large tensions. The non-affine response allows at least some
of the filaments to relax by moving away from affine positions and this shows
Proc. R. Soc. A
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up in the narrower distribution in forces. The point we want to make is that
although the stress is far from constant—the peak is not a delta function—it is
far narrower than the distribution of the forces seen for the affine case. Since
these distributions are in log-space, the typical reductions in forces observed are
on the order of 102 − 103(A/L2) for some filaments (see histogram corresponding
to e = 0.2, for example), which is a very significant reduction. It does not seem
unreasonable therefore that semiflexible networks might be better modelled by a
constant stress rather than a constant strain approach.

6. The effect of temperature

One of the most striking observations from figures 7 and 8 is that the non-affinity
measure D is not zero for the case a = 0, for small strains. In this perfectly cubic
lattice where each of the connections is the same length, one would expect there
to be no non-affine deformations, since they all have a higher free energy. How
then is it possible that we observe non-zero values of D? The resolution of this
comes from the definition of D

D = 〈|〈R(q) − LR0(q)〉T|〉q .
Although the thermal average (that is, averaging over samples drawn from the
Metropolis algorithm) should yield zero for samples distributed symmetrically
about the affine position, for a finite number of trials, this is never going to be
the case and one is left with a small non-zero values of D. We verify that this non-
zero value of D is indeed owing to the effect of a finite temperature by considering
the temperature dependence of D2 for the cases a = 0 and e = 0.

Moving a node away from its zero energy position weakly stretches some
filaments and compresses others. Provided that the deviation in position is
small, the penalty associated with this will be quadratic in the position because
to first order the potential of semiflexible polymers is quadratic. Hence, for
small R(q) − LR0(q), the energetic penalty associated with R(q) − LR0(q)
is E ∼ (R(q) − LR0(q))2. By equipartition, we should therefore observe that
〈(R(q) − LR0(q))2〉 = D2 ∼ kBT . Figure 10 plots D2 against T on logarithmic
scales and we do indeed see a scaling D2 ∼ T as we would expect. This verifies
that the non-zero values of D observed for small strains in figures 7 and 8 are due
to thermal fluctuations.

7. Bending across nodes

One of the obvious criticisms one could level against our model is that the nodes
are essentially free hinges. In reality, the cross-links in a semiflexible network
simply link two filaments together, and while this cross-link itself may allow the
filaments to rotate with respect to one another, there will still be an energy
penalty for bending a single filament through the cross-link (figure 11). The effect
of bending across a cross-link has been considered in some two-dimensional models
of semiflexible networks before by Head et al. (2003) and by Heussinger et al.
(2007) and one might wonder therefore if it has an influence in our model too. It
is clear that whether or not bending will be important depends on the imposed
Proc. R. Soc. A
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Figure 10. Plot, on log–log scales of D2 versus temperature. Equipartition predicts that D2 ∼ T
as we observe, verifying that the non-zero D we observe initially in figures 7 and 8 are thermal
fluctuations.
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q

Figure 11. If one considers the red and blue lines to represent two filaments that have become
cross-linked, then although the angle f may be able to cost no energy (depending on the type of
cross-linker), the angle q should always cost energy because it represents a bend in a single filament.
(Online version in colour.)

deformation. If one imposes compression, for example, then a freely hinged regular
structure will be floppy, while in contrast the same structure would not be floppy
to shear deformations.

To check the influence of bending across a cross-link, we examined the shear
modulus and measure of non-affinity D by including an energy that penalizes
bending across a link. By this we mean the following: if we have a node labelled
by (i, j , k) then the connections (i, j , k) → (i + 1, j , k) and (i, j , k) → (i − 1, j , k)
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Figure 12. Shear modulus of a freely hinged network (solid line) and a network that includes
bending energy across a link with kb = 1(A/L) (open circles). Network corresponds to N = 5 and
a = 0.5. Inset, the non-affinity measure a as a function of strain for the two networks with (open
circles) and without (solid line) bending energy term.

are assumed to be the same filament as are connections that link between j ’s
and k’s (figure 11 shows the connections belonging to the same filament in the
same colour).

Referring to figure 11, we mean that there should be an energy penalty
associated with the angle q, but not f. Therefore, we modify the energy function
(2.9) to include an additional term 1/2kbq2, where kb is a measure of bending
rigidity. A rod with bending modulus A separated into links of length b, bent
through an angle q, the associated energy is 1/2(A/b)q2, so kb = A/b. Since we
have taken the lattice spacing b = 1 for the network, this means we use the same
value for kb as for A in the free energy of the individual connections. The shear
modulus (figure 12) and non-affinity measure (inset) are not affected by including
this bending energy term. This is of relevance to biological networks of polymers
that are cross-linked by molecules that allow free rotation.

On the other hand, if cross-links are much stiffer (for example, the ARP2/3
complex that forms the branching in dendritic actin Blanchoin et al. (2000)), the
picture changes. In this case, it is no longer true that the effect of an additional
rod reduces the number of degrees of freedom by 1. In fact, for a rigid linker,
each rod reduces the degrees of freedom in the network by 3. In such a case,
the network is always rigid independent of the network coordination and shows a
much weaker stiffening on deformation as shown in figure 13. This highlights that
the softening of networks owing to non-affine deformations will only be observed
if the underlying network has low-energy deformations that can be explored.
Put another way, affine theory places additional constraints on the way in which
vertices in the network deform. If these constraints prohibit the network from
exploring low-energy deformations (as in the case of freely hinged networks) then
the affine theory will be a poor approximation and non-affine deformations will
be crucial to network elasticity. If, on the other hand, other effects (such as
rigid cross-links) are placing additional constraints on the network, low-energy
deformations may no longer exist and the effect of non-affine deformations will
be less dramatic.
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Figure 13. Shear modulus of a freely hinged network (solid line) and a network that includes
bending energy across a link with a large bend modulus of kb = 104(A/L), which is far stiffer than
the effective bending stiffness of the rod alone. This is a model of rigid linkers. Network corresponds
to N = 5 and a = 0.5.

We stress that this discussion of the importance of bending and non-affine
deformations is very much dependent on the type of deformation applied.
Although a weak bending energy at vertices is not relevant in shear geometry, it
will certainly be important under simple compression. Shear necessarily stretches
some filaments and because stretching energies are highly nonlinear functions
of extension these dominate the network response. Under compression, it is not
necessary to stretch connections and one would therefore expect bending energy
to play a far more important role.

It is also crucial to point out that the influence of bending stiffness on
mechanics and the extent to which non-affine deformations soften a network
relative to affine deformations will depend strongly on the coordination of the
network. In the case of the marginally rigid networks considered here, the effects
are dramatic. For over-constrained networks composed of many cross-linked
filaments this may no longer hold (Head et al. 2003) and for under-constrained
networks one would expect the influence of bending stiffness to be crucial
(Heussinger et al. 2007). For networks that lie in the middle between these
extreme cases, however, our work shows that the effect of disorder and non-affine
deformations are of great importance.

8. Conclusions

Semiflexible networks are complicated interacting systems and to construct
models of elasticity one usually needs to make assumptions about how the
imposed deformation is distributed in the network. The usual approach is often
to assume that the strain field is affine—locally being the same everywhere—
which works well for conventional elastomer networks. For semiflexible
networks, however, an affine theory vastly overestimates the modulus and the
approximation gets worse at non-zero strains. That is, if one wants to model the
modulus–strain relationship for a semiflexible network, non-affine deformations
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must be accounted for. These non-affine deformations are able to relax some
filaments such that the distribution of forces in the network is far narrower for a
network allowed to deform non-affinely compared with one constrained to deform
affinely. We propose therefore that modelling semiflexible networks in constant
stress regimes might be a more physical approach than modelling them in the
constant strain regime. For example, one line of potential enquiry might be to
investigate whether some properties of semiflexible networks can be explained
using simple one-dimensional models of filaments in a constant force ensemble
whereby one obtains the average strain of the network as a function of the applied
stress by inverting the expression in equation (2.3).

The influence of quenched disorder in a semiflexible network is also important.
Since semiflexible filaments have such nonlinear force–extension relationships,
filaments of different lengths have dramatically different stiffnesses. This means
that, in general, the network would like to find deformation fields that stretch
the softer, longer filaments at the expense of the shorter, stiffer ones since such
deformations must be lower in energy.

We find that, for the shear geometry considered, including the effect of bending
energies across cross-links for physical values of the bending stiffness, does not
appreciably alter the elasticity of the networks.

We would like to thank John Biggins, Robert Lee, Panayotis Benetatos and Alessio Zaccone for
helpful discussions. We also acknowledge that the comments of the reviewers have helped clarify
certain points. This work was supported by the TCM EPSRC partnership.
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