TY - JOUR
T1 - Theoretical and experimental studies of gravity wave interactions
JF - Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
JO - Proc R Soc Lond A Math Phys Sci
SP - 104
LP - 119
M3 - 10.1098/rspa.1967.0125
VL - 299
IS - 1456
AU -
Y1 - 1967/06/13
UR - http://rspa.royalsocietypublishing.org/content/299/1456/104.abstract
N2 - This paper is concerned with various aspects of the resonant interactions among waves. An experiment was suggested by Longuet-Higgins (1962) to detect this type of interaction among surface waves. This was subsequently performed by Longuet-Higgins & Smith (1966) and by McGoldrick, Phillips, Huang & Hodgson (1966). The results of the two sets of experiments are compared. Together they demonstrate very clearly the principal characteristics of the interaction; the maximum response at resonance and the linear growth with interaction distance, the decrease in band width with interaction distance and the shift of the resonance point that results from the amplitude dispersion. It is shown further that the instability of the Stokes wave, discovered and analysed by Benjamin & Feir, can be described in terms of these interactions and that it is not restricted to purely two dimensional motion. A Stokes wave is unstable to a disturbance containing a pair of wavenumbers defined by any point in the zone just inside the figure-of-eight loop shown in figure 12. Another example of resonant wave interactions is provided by short, internal gravity waves in a stratified fluid with constant Brunt-Väisälä frequency. The interactions among Fourier modes are considered, and it is shown that there arise both free and forced modes. In the latter, the dispersion relation for internal waves is not satisfied; there is no particular relation between wavenumber and frequency. The amplitudes of these are small compared with those of the internal wave modes provided the harmonic mean of the vorticity in the two interacting waves is small compared with the Brunt-Väisälä frequency. The motion then consists of interacting internal gravity waves, whose interaction sets are closed. On the other hand, if the forced components are comparable in magnitude with the wave modes, these interact strongly and indiscriminately; a ‘cascade’, characteristic of turbulence, develops.
ER -