Equations (5.20)\textsubscript{2} and (5.25) are incorrect and should read as shown below. First, note that the summation convention involving indices in coefficients $c_{1}^{(j)}$, $c_{2}^{(k)}$ and c_{3} is somewhat different from the usual one and should be carefully handled. Thus, in equation (5.20), corresponding to the first equation, the second equation should read

$$
\rho \ddot{u}_i = \mu \frac{1}{c_{1}^{(j)}} \left(\frac{u_{i,j}}{c_{1}^{(j)}} \right)_j + (\lambda + \mu) \frac{1}{c_{1}^{(i)}} \left(\frac{u_{j,i}}{c_{1}^{(j)}} \right)_i. \tag{5.20}_2
$$

Although $c_{1}^{(j)}$ is a function of x_j only, and independent of $x_i \ (i \neq j)$, the term $u_{j,i}/c_{1}^{(j)}$ is subject to summation over $j = 1, 2, 3$ and equals $u_{1,1}/c_{1}^{(1)} + u_{2,2}/c_{1}^{(2)} + u_{3,3}/c_{1}^{(3)}$. Therefore, it is incorrect to pull $c_{1}^{(j)}$ out from the derivative. Similarly, in equation (5.23) the expression $(c_{3}u_{j,i}/c_{1}^{(i)}c_{1}^{(j)})_j$ involves a summation over $j = 1, 2, 3$ so that, effectively, equation (5.25) should be disregarded and we obtain the same result as in equation (5.20)\textsubscript{2}.

To recapitulate, the coefficients $c_{1}^{(i)}$, $c_{1}^{(j)}$, $c_{1}^{(k)}$ and $c_{2}^{(i)}$, $c_{2}^{(j)}$, $c_{2}^{(k)}$ are not involved in the summation convention. For example, equation (3.2) is written explicitly as

$$
\int_{S_d} \bar{f} \cdot \hat{n} dS_d = \int_{S_2} f_k c_{2}^{(k)} n_k dS_2 = \sum_{k=1}^{3} \int_{S_2} f_k c_{2}^{(k)} n_k dS_2 \tag{3.2}
$$

owing to the repeated index in f_k and n_k. Also note that equation (3.5) does not involve a summation on k, although $c_{1}^{(k)}$ and x_k have a repeated index ‘k’

$$
\nabla_k^D := \frac{1}{c_{1}^{(k)}} \frac{\partial}{\partial x_k} (\cdot) \neq \sum_{k=1}^{3} \frac{1}{c_{1}^{(k)}} \frac{\partial}{\partial x_k} (\cdot). \tag{3.5}
$$