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This article gives an overview of recent work on the theory of selection functions. We
explain the intuition behind these higher type objects, and define a general notion of
sequential game whose optimal strategies can be computed via a certain product of
selection functions. Several instances of this game are considered in a variety of areas such
as fixed point theory, topology, game theory, higher type computability and proof theory.
These examples are intended to illustrate how the fundamental construction of optimal
strategies based on products of selection functions permeates several research areas.
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1. Introduction

Life is the sum of all your choices, so said Albert Camus. But what does ‘choice’
mean? One could say that to choose is to select one element x out of a set X of
possible candidates. The set X could be the collection of all the petrol stations
on the way to work, or the different types of fuel available at a particular station.
Our choice x is which petrol station to use when the fuel tank empties or which
types of fuel we prefer.

So, how do we make choices? What leads us to pick one particular x over all
others? If we ignore the fact that in some cases we do like to pick things at random,
it is fair to say that we normally decide on a few criteria before making a choice.
For instance, quite often we implicitly assign a value (say, a real number R) to
each element of the set, representing the cost of making that particular choice.
If X is the set of fuel types at a particular petrol station, then our mapping
p: X → R could be the cost of a litre of petrol of each particular type x . We then
select an x ∈ X that has minimal cost or the best cost-benefit. In fact, we are
only using the real numbers as an ordered set. Any ordered set (R, ≤) would be
sufficient. The order does not even need to be total, meaning that for some two
candidates x and x ′ we might not be able to tell which one is better.
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Anyway, once we have fixed a more structured set R, our ‘criteria’ mapping
p: X → R propagates the structure of R to the elements of X . For instance, if
R is an ordered set, we immediately get an order on X by saying that a petrol
station x is better than another petrol station y, if p(x) ≥ p(y). Thus, we might
be interested in picking an x ∈ X , which either maximizes or minimizes the value
of p(x), depending on whether p: X → R represents the quality of fuel or the cost
of a litre of that particular fuel type, respectively.

Although the mapping p: X → R depends on the criteria used by a particular
individual, the fact that we pick an x , which minimizes the cost is much more
universal. We use the same minimization function when choosing the cheapest
hotel or the cheapest pair of trousers. Any function, such as the minimization
or maximization functions, that in a uniform way picks an x ∈ X when given a
mapping p: X → R we shall call a selection function. These are functions of type

(X → R) → X .

The ‘minimization’ selection function, which we use when p describes the cost
associated with each particular choice, is

3(p) = any x ∈ X , such that p(x) ≤ p(y) for all y ∈ X ,

whereas the ‘maximization’ selection functions, which we use when p represents
the payoff obtained by making a particular choice, is

d(p) = any x ∈ X , such that p(x) ≥ p(y) for all y ∈ X .

Both 3 and d have type (X → R) → X .
Note that selection functions decide which element to choose for each given

‘criteria’ mapping p: X → R. If the cost of the different fuel types change, we
might be led to make a different choice, although we are still using the same
selection function 3. Only the criteria mapping p will have changed.

Once we have the chosen element x = 3(p), we can in particular calculate the
optimal cost (or payoff) we have achieved as

r = p(x) = p(3(p)).

For a given p: X → R, we say that x = 3(p) is an optimal choice, whereas
r = p(3(p)) is the optimal outcome. We can also define the optimal outcome
directly. For instance, in the case of the petrol station, the optimal outcome
is the minimum value of the mapping p: X → R. As 3 picks an x where p has
least value, we have that

min(p) = p(3(p)),

for all p: X → R.
A similar equation to the above also holds for the relation between max and

the selection function d, i.e.

max(p) = p(d(p)).

In general, we call a function

f: (X → R) → R

a quantifier. When for a given quantifier f a selection function 3 always picks
x = 3(p), such that f(p) = p(x) we say that 3 is a selection function for f. In this
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case f can be defined from epsilon by the equation

f(p) = p(3(p)).

Intuitively, both selection functions and quantifiers operate on the criteria
mapping p: X → R. A quantifier f says what is the desired outcome for a
given p: X → R, whereas a selection function 3 for f calculates an x ∈ X , which
achieves that outcome. Note that our concept of ‘quantifier’ is more general than
Mostowski’s notion of a generalized quantifier (Mostowski 1957), which is the
case when R is the set of truth-values or Booleans.

For the rest of this review, we shall explore the connection between quantifiers
and selection functions, and define algebraic operations on them. We will then
define a notion of sequential game, and show that the product of selection
functions allows us to compute optimal strategies in such games. In §8, we show,
by picking particular instantiations from different areas, that this notion of game
is very general. This review mostly covers recent work of the authors, which has
appeared in Escardó & Oliva (2010a,b,c), although some concepts have been
simplified and generalized.

l-notation. In the following sections, we rely heavily on the use of l-notation
to describe functions. For instance, the function ‘two to the power of n’
can be described as ln · 2n . When this is applied to 3, for instance, it gives
(ln · 2n)(3) = 23 = 8. The l-notation is particularly useful when working with
higher type objects such as functions 3 from X → R to X , since its argument
is itself a function.

Models of higher type functions. For the first part of the paper (§§2–5), which
concerns finite games of fixed length, the reader can safely think of X and Y as
ordinary finite or infinite sets, and the mappings X → Y as the set of all functions
from X to Y . In §6, however, which concerns games of unbounded length, one
has to be careful and work with (non-standard) models of functionals, so as to
ensure that the infinitely iterated product is well-defined. The model we should
bear in mind in this case is that of the continuous functionals (Normann 1999),
and in some cases also the model of majorizable functionals (Bezem 1985).

2. The product of quantifiers

Continuing from the examples given in §1, suppose now that we could only choose
which petrol station to stop at, and the owner of the petrol stations then chooses
the type of fuel we must use at that particular station we have picked. As we know
that the owner will try to maximize his profit and will offer us the most expensive
fuel, we have to choose the petrol station with the cheapest most expensive fuel.
In other words, if X is the set of petrol stations, Y is the set of different fuel types,
and q: X × Y → R gives the cost of fuel y at station x , then the best outcome for
us is to pay

r = inf
x∈X

sup
y∈Y

q(x , y).

Interestingly, this is also the optimal outcome for the owner of the petrol stations,
as he has no control over which station we choose.

Let us use the abbreviations KRX = (X → R) → R and JRX = (X → R) → X
for the types of quantifiers and selection functions, respectively.
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Definition 2.1 (Binary product of quantifiers). Given quantifiers f: KRX and
j: KRY , we define their product (f ⊗ j): KR(X × Y ) as

(f ⊗ j)(qX×Y→R) = f(lxX · j(lyY · q(x , y))).

For instance, given the quantifiers inf: KRX and sup: KRY discussed above we
have that their product is

(sup ⊗ inf)(qX×Y→R) R= sup
x∈X

inf
y∈Y

q(x , y),

where, for clarity, we indicate above the equality sign the type of the two objects.
Also, given the quantifiers ∃ : KBX and ∀ : KBY , corresponding to the existential
and universal quantifiers, we have that their product concisely describes the
nesting of quantifiers, i.e.

(∃ ⊗ ∀)(qX×Y→B) B= ∃xX∀yY q(x , y).
We can iterate this binary product of quantifiers and obtain an n-ary product a
follows:

Definition 2.2 (n-ary product of quantifiers). Given a sequence of quantifiers
fi : KRXi , 0 ≤ i ≤ n, define their product inductively by iterating the binary
product as

n⊗
i=k

fi = fk ⊗
(

n⊗
i=k+1

fi

)
,

where (
⊗n

i=n fi) = fn .

Let us show how the concept of quantifiers allows us to define a very general
notion of sequential games. We will also show that the product of quantifiers
described above computes the optimal outcome of such games.

3. Finite games of fixed length

Games often simulate life. In particular, a play in a game can be viewed as a
sequence of choices that lead to some outcome. Hence, we can think of a sequence
of choices as a sequence of moves in some sequential game. In the case of choosing
which petrol station to use, this is a simple game with one player and one round.
In the case, we must also choose which fuel type to use, this is a one-player two-
round game. If the owner of the station chooses the type of fuel we must use,
then this is a two-player two-round game. In all cases, the aim of the game for
us (the first player in the last example) is to minimize the cost (or maximize the
payoff) obtained from a particular choice, and the actual move in the game is the
particular choice we commit ourselves to.

In the following, we explore the concept of a quantifier introduced above and
generalize these scenarios to games with a finite number of rounds.

Definition 3.1 (Finite game). Any tuple (R, (Xi)n−1
i=0 , (fi)n−1

i=0 , q) defines an
n-round sequential game, where

— R is the set of possible outcomes of the game,
— Xi is the set of possible moves at round i,
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— fi : KRXi is the quantifier for round i, and
— q: Pn−1

i=0 Xi → R is the outcome function.

A sequence x0, . . . , xn−1 ∈ Pn−1
i=0 Xi is called a play of the game.

Note that, we have said nothing about the number of players in the game.
Instead, the definition of the game includes a quantifier fi for each round. This
function fi picks a particular outcome fi(p) = r ∈ R when given a mapping
p: Xi → R. Intuitively, once we know how each choice of move in Xi will impact
the outcome of the game, then fi tells us what outcome would be desirable.

For instance, if R = {−1, 0, 1} and fi are the minimum-value function for odd
rounds and the maximum-value function for even rounds, then we have a two
player game where one player is aiming for the outcome −1, whereas the other is
aiming for the outcome 1. Thus, the three possible outcomes correspond to one
of the players winning, or the game ending in a draw.

The example in §2 corresponds to the case when n = 2, i.e. a game with two
rounds. X is the set of petrol stations and Y is the collection of different fuel
types. The outcome function q: X × Y → R gives the cost of a particular fuel at
a particular station. As we are choosing which station to use, and the owner of
the stations chooses the fuel to be used, we have that f0 = inf, whereas f1 = sup.

Definition 3.2 (Strategy). A strategy for the game (R, (Xi)n−1
i=0 , (fi)n−1

i=0 , q) is a
family of mappings nextk :

∏k−1
i=0 Xi → Xk , for each 0 ≤ k < n. Given a partial play

a = a0, . . . , ak−1, any strategy defines a strategic extension of a as

ba
j

Xj= nextj(a0, . . . , ak−1, ba
k , . . . , ba

j−1)

for k ≤ j < n.

Given a strategy (nextk)i<n , the functions nextk compute which move should
be played at each round k, i.e. when the game is at position a = a0, . . . , ak−1 the
next move selected is given by ak = nextk(a). The strategic extension of a partial
play is simply the play obtained by following the strategy at each round.

Definition 3.3 (Optimal strategy). A strategy (nextk)k<n is said to be optimal
if for every partial play a = a0, . . . , ak−1, we have

q(a, ba
k , . . . , ba

n−1)
R= fk(lxk .q(a, xk , b

a,xk
k+1 , . . . , ba,xk

n−1)).

Intuitively, a strategy is optimal if the outcome obtained by following the
strategy q(a, ba

k , . . . , ba
n−1) is the best possible outcome as described by the

quantifier fk , for each round k. For instance, considering again the example from
§2, the optimal strategy would consist of the functions

next0() = any x ∈ X , such that sup qx ≤ sup qx ′ for any other x ′ ∈ X

and

next1(x) = any y ∈ X , such that q(x , y) ≥ q(x , y ′) for any other y ′ ∈ Y ,

where sup qx abbreviates supy∈Y q(x , y). In general, we will write qx for the
function ly · q(x , y).
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Theorem 3.4 (Optimal outcome). For any optimal strategy (nextk)k<n let b be
its strategic play. We have that

w :=
(

n−1⊗
i=0

fi

)
(q) = q(b).

We call w the optimal outcome of the game. Note that, this is unique and
independent of the optimal strategy.

Proof. Let an optimal strategy (nextk)k<n be fixed. By the definition of optimal
strategy (definition 3.3), we have

q(b) = f0(lx0 · q(x0, b
x0
1 , . . . , bx0

n−1))

= f0(lx0 · f1(lx1 · q(x0, x1, b
x0,x1
2 , . . . , bx0,x1

n−1 )))

. . .

=
(

n−1⊗
i=0

fi

)
(q).

�

As discussed in §2, the optimal outcome of the game between us and the owner
of the petrol station is for us to choose the station with cheapest most expensive
fuel, whereas the owner then picks the most expensive fuel at the station we have
chosen. So the optimal outcome of the game is

w = (inf ⊗ sup)(q).

If, on the other hand, we could choose not only which station to use, but also
which fuel type to use (and if we were interested in minimizing our cost) that is
a different game where f0 = f1 = inf and the optimal outcome of the game is

w = (inf ⊗ inf)(q),

where we pick the station which has the cheapest fuel, and then pick the cheapest
fuel at that chosen station.

Definition 3.5 (Subgames). A partial play a:
∏k−1

i=0 Xi , for k ≤ n defines the
subgame (R, (Xi)n−1

i=k , (fi)n−1
i=k , qa), where qa :

∏n−1
i=k Xi → R is the partial outcome

function defined as

qa(xk , . . . , xn−1) := q(a0, . . . , ak−1, xk , . . . , xn−1),

or, more concisely qa(x) := q(a ∗ x), where ∗ denotes concatenation of finite
sequences.

The subgame (R, (Xi)n−1
i=k , (fi)n−1

i=k , qa) is like the original game except that we
are starting at the position determined by the initial moves a. Notice that if k = n
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then q is constant, and when k = 0 this is the same as the full game. The optimal
outcome of the subgame defined by a can similarly be computed as

wa :=
(

n−1⊗
i=k

fi

)
(qa).

If k = n this corresponds to the subgame where there are no more moves to be
made—the end of the game. Therefore, the outcome can be computed directly
from the moves already made a, i.e. wa = q(a). If k < n then we have a proper
subgame, and the optimal outcome of this proper subgame is

wa = fk

(
lxk ·

(
n−1⊗

i=k+1

fi

)
(qa∗xk )

)
= fk(lxk · wa∗xk ).

Hence, the optimal outcome of round k is determined by the quantifier for round
k together with the mapping lxk · wa∗xk computing the optimal outcome at round
k + 1 given what is played at round k. Considering again the example from §2,
when choosing which petrol station x to stop at, it is enough to look at the most
expensive fuel type wx at each station, because we know that this is the fuel type
the owner of the stations will offer us. Therefore, the optimal outcome for us is
inf(lx · wx). The notion of optimal outcome for subgames leads to the notion of
optimal move.

Definition 3.6 (Optimal move and optimal play). For a partial play a =
a0, . . . , ak−1 a move xk at round k is said to be an optimal move if it preserves
the optimal outcome, i.e. if the optimal outcome wa of the subgame determined
by a is the same as the optimal outcome wa∗xk of the new subgame determined
by a ∗ xk . A whole play x = x0, . . . , xn−1 is called an optimal play if each xk is an
optimal move given the partial play x0, . . . , xk−1.

In other words, a move at round k is optimal if it leads to a subgame where the
optimal outcome of the game is still achievable. As one would expect, if we play
optimally at each round we will end-up with the optimal outcome of the game.

Lemma 3.7. If x = x0, . . . , xn−1 is an optimal play then

q(x) = w =
(

n−1⊗
i=0

fi

)
(q),

i.e. the outcome of an optimal play is the optimal outcome.

Proof. Since x is an optimal play we have that (for all 0 ≤ i < n) xi is an optimal
move in the subgame x0, . . . , xi−1, i.e.

w = wx0 = wx0,x1 = · · · = wx0,...,xn−1 .

The result follows since wx0,...,xn−1 = q(x), whereas w = (⊗n−1
i=0 fi)(q). �

Moreover, the next lemma shows that plays obtained by following optimal
strategies are indeed optimal.

Lemma 3.8 (Optimal strategies and optimal plays). For any optimal strategy
its strategic play is an optimal play.
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Proof. Assume (nextk)k<n is an optimal strategy, and let b = b0, . . . , bn−1 be
the strategic play. We must show, for 0 ≤ k < n − 1, that wa = wa∗bk , where
a = b0, . . . , bk−1. By (i) the definition of optimal outcome and (ii) the fact that
(nextk)k<n is an optimal strategy we have

wa
(i)=

(
n−1⊗
i=k

fi

)
(qa)

T3.4= q(a ∗ ba)

= q(a ∗ bk ∗ ba∗bk )

(ii)= fk+1(lxk+1 · q(a ∗ bk ∗ xk+1 ∗ ba∗bk∗xk+1))

T3.4= fk+1

(
lxk+1 ·

(
n−1⊗

i=k+2

fi

)
(qa∗bk∗xk+1)

)

=
(

n−1⊗
i=k+1

fi

)
(qa∗bk )

(i)= wa∗bk . �
Note that optimal strategies do not exist in general, since optimal outcomes are

not necessarily achievable. For instance, consider the game with a single round
having quantifier f0: K{0,1}{0, 1}

f0(p) = 0,

and assume the outcome function is q(x) = 1. The optimal outcome defined by f0
is 0, whereas the only achievable outcome is 1. Nevertheless, in §5, we will show
that optimal strategies always exist when the quantifiers that define the game
are attainable, i.e. have corresponding selection functions. Moreover, a suitably
defined product of selection functions calculates optimal strategies.

4. Games with multiple optimal outcomes

Before we proceed to show how a product of selection functions computes optimal
strategies, let us first generalize the notion of game introduced in §3. For that,
let us consider the space

SRX ≡ (X → R) → 2R

of multi-valued quantifiers. Similarly to before, we say that a multi-valued
quantifier f: SRX is attainable if there exists a selection function 3: JRX , such that

p(3(p)) ∈ f(p),

for all p: X → R. Intuitively, f describes a set of optimal outcomes for any given
criteria mapping, and the selection function 3 for f picks an x ∈ X , which achieves
one of the optimal outcomes.
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Definition 4.1 (Finite games with multiple optimal outcomes). An n-round
sequential game with multiple optimal outcomes is a tuple (R, (Xi)n−1

i=0 , (fi)n−1
i=0 , q)

where

— R is the set of possible outcomes of the game,
— Xi is the set of possible moves at round i,
— fi : SRXi is the multi-valued quantifier for round i, and
— q: Pn−1

i=0 Xi → R is the outcome function.

A sequence x0, . . . , xn−1 ∈ Pn−1
i=0 Xi is called a play of the game.

Just as in §3, every partial play a:
∏k−1

i=0 Xi defines a subgame. In games with
multiple optimal outcomes, however, we cannot define ‘the’ optimal outcome
as we did in §3, simply because there might not be a single optimal outcome
for the whole game. Moreover, there seems to be no way of defining a product of
multi-valued quantifiers, as we did for the single-valued quantifiers. Nevertheless,
we can still define a notion of an optimal strategy, slightly generalizing
definition 3.3.

Definition 4.2 (Optimal strategy). Recall that a partial play a = a0, . . . , ak−1

and a strategy (nextk :
∏k−1

i=0 Xi → Xk)k<n defines a strategic extension of a as

ba
j = nextj(a0, . . . , ak−1, ba

k , . . . , ba
j−1)

for k ≤ j < n. A strategy (nextk)k<n is said to be optimal if for every partial play
a = a0, . . . , ak−1, we have

q(a, ba
k , . . . , ba

n−1) ∈ fk(lxk · q(a, xk , b
a,xk
k+1 , . . . , ba,xk

n−1)).

Compare this with definition 3.3, where we have equality (=) instead of ∈.

In §3, we said that a strategy was optimal if the outcome of an strategic play
q(a, ba

k , . . . , ba
n−1) was precisely the optimal outcome according to the quantifier

fk . By moving to multi-valued quantifiers, what we must say instead is that a
strategy is optimal if the outcome of a strategic play is among the possible optimal
outcomes for each of the multi-valued quantifier fk . It is clear that when multi-
valued quantifiers are in fact single-valued the two notions of optimal strategy
(definitions 3.3 and 4.2) coincide.

5. Calculating optimal strategies

We have explained at the end of §3, why optimal outcomes are not always
achievable. Note also that even when an optimal outcome is achievable, optimal
strategies are not necessarily unique. There might be several choices which are all
equally optimal, if all lead to an optimal outcome of the game. Nevertheless, what
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we show next is that if the (multi-valued) quantifiers fk for each round k have
associated selection functions 3k , then we can always compute optimal strategies
(in the more general sense of definition 4.2) in the game defined by such fk ’s.
Intuitively, having a selection function 3 is a stronger requirement than simply
having a quantifier f, because every selection function 3 defines a (single-valued)
quantifier as

f(p) := p(3(p)).

Recall that JRX abbreviates (X → R) → X .

Definition 5.1 (From JRX to KRX). Denote by (·): JRX → KRX the following
mapping from selection functions to quantifiers

3̄(p) := p(3(p)). (5.1)

Going back to the example from §2, we are in a good position because the
quantifiers inf and sup in this case have selection functions 3 and d, respectively
(as defined in §1). It is for that reason that we can find a play which is optimal
and hence leads to the optimal outcome

inf
x∈X

sup
y∈Y

q(x , y).

But how do we compute the optimal play x , y that leads to this optimal outcome?
The solution is to turn the game upside down. Instead of trying to find the correct
x first, we instead look for the best choice of y ∈ Y for any given x ∈ X . That can
be done very easily using the selection function d for the quantifier max, i.e.

yx := d(ly · q(x , y)).

Hence, for each of our choices of petrol station x ∈ X , we know what the optimal
move yx ∈ Y of the second player is. Once we have this mapping x �→ yx from our
choice of station x to the fuel type yx ∈ Y the owner of the petrol station will
offer us, we can choose the petrol station with cheapest most expensive fuel. For
that we use the selection function for the minimization quantifier, i.e.

a := 3(lx · q(x , yx)).

Finally, once we have computed our best choice of petrol station a as above, we
can then go back to yx and compute the optimal move for the second player as
y = ya (where a is now the optimal move for player one). Such construction works
in general, as we have only used the fact that 3 and d are selection functions for
the quantifiers min and max, respectively.

Definition 5.2 (Binary product of selection functions). Given selection
functions 3: JRX and d: JRY define their product (3 ⊗ d): JR(X × Y ) using
l-notation as

(3 ⊗ d)(qX×Y→R) = (a, ya),

where a = 3(lx · q(x , yx)) and yx = d(ly · q(x , y)). We can then equivalently define
the product above using function composition as

(3 ⊗ d)(qX×Y→R) = (3(p), (d ◦ q̂ ◦ 3)(p)),
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where p X→R= d̄ ◦ q̂ and q̂: X → (Y → R) is the curried form of q: X × Y → R. This
is illustrated diagrammatically as

(X → R)
3 � X

q̂ � (Y → R)
d � Y

X
q̂ � (Y → R)

d̄ � R.

First let us show that the product of selection functions corresponds to the
product of single-valued quantifiers defined in §2.

Lemma 5.3. For any given 3: JRX and d: JRY we have 3̄ ⊗ d̄ = 3 ⊗ d.

Proof. Simply unfolding definitions we have

(3 ⊗ d)(q) = q(a, ba) = 3̄(lx · q(x , bx)) = 3̄(lx · d̄(ly · q(x , y))) = (3̄ ⊗ d̄)(q).

�
From this we can conclude that, just like the product of quantifiers (definition

2.1) computes the optimal outcome of a single-optimal-outcome game, the
product of selection functions (definition 5.2) computes an optimal play in
such games.

Theorem 5.4 (Optimal plays for two-round games). Let a two-round sequential
game (R, (Xi)1

i=0, (fi)1
i=0, q) be given. If the quantifiers f0, f1 have selection

functions 30, 31 then an optimal play in the game can be computed as

x , y = (30 ⊗ 31)(q).

Proof. We must show that x and y are optimal moves, i.e. that wx ,y = q(x , y)
equals wx = f1(ly · q(x , y)), which in turn must equal the optimal outcome
w = (f0 ⊗ f1)(q). First note that x = 30(lx ′ · f1(ly ′ · q(x ′, y ′))) and y = 31(ly ′ ·
q(x , y ′)). The result then follows as:

(f0 ⊗ f1)(q) = f0(lx ′ · f1(ly ′.q(x ′, y ′)))

= f1(ly ′.q(x , y ′))
= q(x , y),

since f0(p) = p(30(p)) and f1(p) = p(31(p)). �
In the general case of multi-valued outcome functions, we have:

Theorem 5.5 (Optimal strategies for two-round games—multi-valued fi ’s). Let
a two-round sequential game (R, (Xi)1

i=0, (fi)1
i=0, q) be given, where f0: SRX0 and

f1: SRX1 are multi-valued quantifiers. If f0, f1 have selection functions 30, 31 then
an optimal strategy in the game can be computed as

next0() = p0((30 ⊗ 31)(q))

and
next1(x) = 31(ly · qx(y)),

where p0 denotes the first projection, i.e. p0(x , y) = x.
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Just as we did with the binary product of quantifiers (definition 2.2) we
can iterate the binary product of selection function to obtain an n-ary product
as follows:

Definition 5.6 (n-ary product of selection functions). Given a sequence of
selection functions 3i : JRXi define their product by simply iterating the binary
product as

n⊗
i=k

3i = 3k ⊗
(

n⊗
i=k+1

3i

)
,

where (⊗n
i=n3i) = 3n .

The following theorem describes how this product of selection functions can be
used to compute optimal strategies.

Theorem 5.7 (Main theorem for finite games of fixed length). Let an n-round
sequential game (R, (Xi)n−1

i=0 , (fi)n−1
i=0 , q) be given (in the more general sense of

definition 4.1). If the multi-valued quantifiers fi : SRX are attainable, i.e. have
associated selection functions 3i , then an optimal strategy for the game can be
computed as

nextk(x0, . . . , xk−1) = p0

((
n−1⊗
i=k

3i

)
(qx0,...,xk−1)

)
,

where p0 denotes the first projection, i.e. p0(x ∗ a) = x.

Proof. This is a particular case of the more general theorem 6.5, which we prove
in §6. �

We call the optimal strategy computed from 3 the 3-strategy, and its strategic
play we call the 3-play. As a consequence of the above theorem we obtain a general
way of finding a solution a and p to the following simple system of equations
and membership. We will discuss in §7 a few examples of how such a system of
equations appears in practice.

Corollary 5.8. Let an n-round sequential game (R, (Xi)n−1
i=0 , (fi)n−1

i=0 , q) be given.
If the multi-valued quantifiers fi : SRX are attainable then there are functions
pk : Xk → R, such that

ak = 3k(pk)

and
q(a) ∈ fk(pk),

for 0 ≤ k < n, where a is the 3-play.

Proof. This is a particular case of the more general corollary 6.6 which we prove
in §6. �

In particular, note that if fk are all single-valued then pj(aj) = pk(ak), for all
0 ≤ j , k < n, as

pj(aj) = pj(3j(pj)) = fj(pj) = q(a) = fk(pk) = pk(3k(pk)) = pk(ak).

The intuitive reading of corollary 5.8 is that in any sequential game (with multi-
valued outcome functions) it is always possible to turn the global outcome
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function q: Pn−1
i=0 Xi → R into a family of local outcome functions pk : Xk → R,

so that

— the 3-play a can be computed locally from the selection functions 3k , and
— the outcome of the 3-play is in the intersection of ‘desired’ outcomes for

all rounds k.

6. Finite games of unbounded length

The sort of games considered so far terminate after a fixed number of rounds n.
We will show next that it is also possible to compute optimal strategies in games
with an unbounded (but finite) number of rounds. These are games where the
number of rounds until the outcome is reached depends on how the game develops.
Because the number of rounds in the game can be arbitrarily large, we must
include in the definition of the game a set of possible moves Xi and an outcome
quantifier fi for all natural numbers i ∈ N. However, we do not want to consider
games that go on indefinitely. One way to ensure that every play in the game is
finite is to assume that the value of the outcome function q is determined after a
finite (but unbounded) number of rounds, i.e.

∀a∃n∀b(∀i ≤ n(a(i) Xi= b(i)) → q(a) R= q(b)). (6.1)

For any ‘infinite’ play a there exists a point n where the value of the outcome
q(a) is fixed, so that any other extension b of the play would lead to the same
outcome. This holds, for instance, when the set of outcomes R is discrete1 and
the outcome function q is continuous.

Definition 6.1 (Finite but unbounded game). A finite but unbounded sequential
game is a tuple (R, (Xi)∞

i=0, (fi)∞
i=0, q) where

— R is the discrete set of possible outcomes of the game,
— Xi is the set of possible moves at round i ∈ N,
— fi : SRXi is the multi-valued quantifier for round i ∈ N, and
— q: P∞

i=0Xi → R is the continuous outcome function.

A sequence a ∈ P∞
i=0Xi is called a play of the game. The relevant part of a play

a is the finite initial segment a(0), . . . , a(n) ∈ Pn
i=0Xi which determines the value

of q(a).

As in §3, a strategy for an unbounded game (R, (Xi)∞
i=0, (fi)∞

i=0, q) is a family
of mappings nextk :

∏k−1
i=0 Xi → Xk , for each k ∈ N. Given a partial play a =

a0, . . . , ak−1, any strategy defines a strategic extension of a as

ba(j) = nextj(a0, . . . , ak−1, ba(k), . . . , ba(j − 1))

for j ≥ k.

1For example, the natural numbers or more generally the types defined in Escardó (2008, definition
4.12).
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Definition 6.2 (Optimal strategy). A strategy (nextk)k∈N is said to be optimal
if for all k ∈ N and for every partial play a = a0, . . . , ak−1, we have

q(a ∗ ba) ∈ fk(lxk · q(a ∗ xk ∗ ba,xk )).

Having defined the unbounded game and its generalized notion of optimal
strategy, we now show how the infinite iteration of the binary product of selection
functions computes optimal strategies in games where the quantifiers fi are
attainable.

Definition 6.3 (Unbounded product of selection functions). Given an infinite
sequence of selection functions 3i : JRXi define their unbounded product by simply
iterating the binary product as

∞⊗
i=k

3i
JRP∞

i=kXi= 3k ⊗
( ∞⊗

i=k+1

3i

)
,

where, for clarity, the type of the final product is shown above the equality sign.

It is perhaps surprising that such product functional is in fact not only
well-defined in the model of continuous functionals (Scarpellini 1971) but also
computable and part of the standard installation of Haskell (see §7g for more
details). This is in stark contrast with the iterated product of quantifiers which
is not well-defined even in the model of continuous functionals.

We will show next that the above product of selection functions permits us
to compute optimal strategies for finite but unbounded games with attainable
quantifiers. First, let us prove the following useful lemma.

Lemma 6.4. Let x = x0, . . . , xk−1 and

a =
( ∞⊗

i=k

3i

)
(qx).

For all j ∈ N the following holds:

a = (a)[j] ∗
⎛
⎝ ∞⊗

i=j+k

3i

⎞
⎠ (qx∗(a)[j]),

where (a)[j] is the initial segment of a of length j, i.e. a(0), . . . , a(j − 1).

Proof. If j = 0 this follows by definition. Assuming this holds for j we wish to
show it for j + 1. We have

a
(IH)= (a)[j] ∗

⎛
⎝ ∞⊗

i=j+k

3i

⎞
⎠ (qx∗(a)[j]) = (a)[j] ∗ c ∗

⎛
⎝ ∞⊗

i=j+k+1

3i

⎞
⎠ (qx∗(a)[j]∗c),

where c = 3j+k(ly · (
⊗∞

i=j+k+1 3i)(qx∗(a)[j]∗y)) = a(j). Therefore, we have that
a = (a)[j + 1] ∗ (

⊗∞
i=j+k+1 3i)(qx∗(a)[j+1]). �

As with the finite games of fixed length (theorem 5.7) we now show how
the unbounded product of selection functions (definition 6.3) computes optimal
strategies in games of unbounded length.
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Theorem 6.5 (Main theorem for finite but unbounded games). Let a finite but
unbounded sequential game (R, (Xi)∞

i=0, (fi)∞
i=0, q) be given. If the quantifiers fi

have selection functions 3i then an optimal strategy in the game can be computed as

nextk(x) = p0

(( ∞⊗
i=k

3i

)
(qx)

)
,

where x = x0, . . . , xk−1.

Proof. Fix an arbitrary partial play x = x0, . . . , xk−1. Let

a =
( ∞⊗

i=k

3i

)
(qx).

We have that

bx(k) = nextk(x) = a(0) = 3k

(
lxk · qx ,xk

(( ∞⊗
i=k+1

3i

)
(qx ,xk )

))
.

By lemma 6.4 we also have that

pn

(( ∞⊗
i=k+1

3i

)
(qx ,xk )

)
= bx ,xk (k + 1 + n).

This implies that

bx(k) = nextk(x) = 3k(lxk · q(x , xk ∗ bx ,xk )).

By the fact that 3k is a selection function for fk we get

q(x , bx(k) ∗ bx ,bx (k)) ∈ fk(lxk · q(x , xk ∗ bx ,xk )).

The result follows since q(x , bx(k) ∗ bx ,bx (k)) = q(x ∗ bx), i.e. starting a strategic
play from x or an extension of that with the next strategic play x , bx(k) leads to
the same final play. �

As a corollary, we obtain that the following system of equations and
membership can be solved via the product of selection functions. This generalizes
corollary 5.8.

Corollary 6.6. Let a finite but unbounded sequential game (R, (Xi)∞
i=0, (fi)∞

i=0, q)
be given. If the quantifiers fk have associated selection functions 3k then there are
functions pk : Xk → R, such that

a(k)
Xk= 3k(pk)

and
q(a) ∈ fk(pk),

for k ∈ N, where a is the 3-strategic play from the proof of theorem 6.5, i.e.

a(k) = 3k

(
lxk · q(a)[k]∗xk

(( ∞⊗
i=k+1

3i

)
(q(a)[k]∗xk )

))
.
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Proof. Let

pk(xk) =
( ∞⊗

i=k+1

3i

)
(q(a)[k]∗xk ).

By definition a(k) = nextk(a(0), . . . , a(k − 1)), i.e.

a(k) = 3k

(
lxk · q(a)[k]∗xk

(( ∞⊗
i=k+1

3i

)
(q(a)[k]∗xk )

))
= 3k(pk).

Moreover, since nextk is an optimal strategy we have, for all k ∈ N that

q(a) = q((a)[k] ∗ b(a)[k])

∈ fk(lxk · q((a)[k] ∗ xk ∗ b(a)[k],xk ))

∈ fk(lxk · q((a)[k] ∗ xk ∗
( ∞⊗

i=k+1

3i

)
(q(a)[n]∗xk )))

= fk(pk). �

(a) Variant of finite games of unbounded length

The generalization of finite games to unbounded games considered above relies
on the set of outcomes R being discrete (and q being continuous). What if R is
not discrete, e.g. R = R? Another way to ensure that every play in the game is
finite is to assume that each outcome r ∈ R determines the length of the play to be
considered, via a fixed mapping l : R → N, which we will call the ‘clock function’.

Definition 6.7 (Unbounded game with explicit control). A finite but unbounded
sequential game with explicit control is a tuple (R, (Xi)∞

i=0, (fi)∞
i=0, q, l) where

— R is the set of possible outcomes of the game,
— Xi is the set of possible moves at round i,
— fi : SRXi is the multi-valued quantifier for round i,
— q: P∞

i=0Xi → R is the outcome function, and
— l : R → N is the clock function.2

A sequence a ∈ P∞
i=0Xi is called a play of the game. The relevant part of a play

a is the finite initial segment a0, . . . , an ∈ Pn−1
i=0 Xi of length n = l(q(a)).

Therefore, only finite initial segments of infinite plays are to be considered,
although the non-relevant extension may be crucial to deciding the outcome of
the game (a different non-relevant extension might lead to a different outcome).
In fact, the length of the relevant part of the infinite play is only determined once
we have fixed the infinite play a. As we are only interested in finite games, we
assume that for each set of moves Xi there exists a canonical element ci ∈ Xi , and
that ck ∈ P∞

i=kXi is the infinite sequence of canonical elements from Xk onwards.
In this way, after each finite play x we check whether the canonical extension of
x is such that its relevant part is an initial segment of x . If so, we have already
2For instance, if R ≡ R′ × N we could take l(·) to be the second projection.
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played past the relevant part of the game and we can stop, since we only require
that the first n = l(q(a)) moves be optimal. All other (non-relevant) moves might
not necessarily be optimal.

Although this sort of unbounded finite game seems less natural than the one
introduced in definition 6.1, we show in §7 that it does appear naturally in proof
theory, from computational interpretations of ineffective principles (see §7f ).

We now show how to compute plays which have an optimal relevant part. First,
we must adapt the notion of optimal strategy to take into account the explicit
control function l : R → N.

Definition 6.8 (Optimal strategy for variant of unbounded game). A strategy
(nextk)k∈N is said to be optimal if for every partial play a = a0, . . . , ak−1, such
that k ≤ l(q(a ∗ ba)) we have

q(a ∗ ba) ∈ fk(lxk · q(a ∗ xk ∗ ba,xk )).

In particular, notice that if nextk is an optimal strategy in the above sense,
then for every partial play a = a0, . . . , ak−1 we have

q(a ∗ ba) ∈ fj(lxj · q(a ∗ b ∗ xj ∗ ba,b,xj )),

for all k ≤ j ≤ l(q(a ∗ ba)), where b is the strategic play of length j − k, starting
from a. This is obtained by a simple iteration, always taking a to be longer
and longer along the strategic play, until the condition k ≤ l(q(a ∗ ba)) no longer
holds. As in §§5 and 6, we now define a slightly different iterated product of
selection functions that computes such optimal strategies for unbounded games
with explicit control.

Definition 6.9 (Unbounded product of selection functions with explicit control).
Let l(·): R → N be fixed. Given an infinite sequence of selection functions 3i : JRXi
and an outcome function q: P∞

i=0Xi → R, we define the unbounded product of
(3i)i∈N by simply iterating the binary product of selection functions as( ∞⊗

i=k

3i

)
(q)

P∞
i=kXi=

{
ck if l(q(ck)) < k,(
3k ⊗ (⊗∞

i=k+1 3i
))

(q) otherwise.

The following theorem shows how (as in theorems 5.7 and 6.5) the product
of selection functions defined above computes optimal strategies for unbounded
games with explicit control.

Theorem 6.10 (Main theorem for unbounded games with explicit control).
Let an unbounded sequential game with explicit control (R, (Xi)∞

i=0, (fi)∞
i=0, q, l) be

given. If the quantifiers fi have associated selection functions 3i then an optimal
strategy in the game can be computed as

nextk(x) = p0

(( ∞⊗
i=k

3i

)
(qx)

)
,

where x = x0, . . . , xk−1.

Proof. Let x = x0, . . . , xk−1 and assume l(q(x ∗ bx)) ≥ k. First, note that this
implies l(q(x ∗ c)) ≥ k, as otherwise, by the definition of the strategy nextk we
would have that bx = c, and get a contradiction. Hence, by the definition of the
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strategic move at round k we have

bx(k) = nextk(x) = 3k

(
lxk · qx ,xk

(( ∞⊗
i=k+1

3i

)
(qx ,xk )

))
.

By a variant of lemma 6.4 to the explicitly controlled product, each component
of the product of selection functions above corresponds to a strategic move from
the initial partial play x , xk , i.e.

bx(k) = 3k(lxk · q(x , xk ∗ bx ,xk )).

By the fact that 3k is a selection function for fk we get

q(x , bx(k) ∗ bx ,bx (k)) ∈ fk(lxk · q(x , xk ∗ bx ,xk )).

The result follows since q(x , bx(k) ∗ bx ,bx (k)) = q(x ∗ bx). �
As a corollary, we obtain that the following set of equations can be solved via

the product of selection functions. The following is another possible generalization
of corollary 5.8. Since we no longer require R to be discrete, but assume a clock
function instead, corollary 6.11 seems to be orthogonal to corollary 6.6.

Corollary 6.11. Let an unbounded game (R, (Xi)∞
i=0, (fi)∞

i=0, q, l) with explicit
control be given. If the quantifiers fi have associated selection functions 3i then
there are functions pi : Xi → R, such that

a(i) Xi= 3i(pi)

and q(a) ∈ fi(pi),

for 0 ≤ i ≤ l(q(a)), where a is the 3-strategic play arising from the optimal strategy
described in theorem 6.10.

Proof. Let

pk(xk) =
( ∞⊗

i=k+1

3i

)
(qa(0),...,a(k−1),xk ).

By definition a(k) = nextk(a(0), . . . , a(k − 1)), i.e.

a(k) = 3k

(
lxk · qx ,xk

(( ∞⊗
i=k+1

3i

)
(qx ,xk )

))
= 3k(pk).

Moreover, since nextk is an optimal strategy we have

q(a) = q((a)[k] ∗ b(a)[k])

∈ fk(lxk · q((a)[k] ∗ xk ∗ b(a)[k],xk ))

∈ fk(lxk · q((a)[k] ∗ xk ∗
( ∞⊗

i=k+1

3i

)
(q(a)[k]∗xk )))

= fk(pk),

for all k ≤ l(q(a)). �
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7. Selection functions everywhere

In this section, we show how these natural notions of finite (definitions 3.1 and 4.1)
and unbounded (definitions 6.1 and 6.7) sequential games, and the corresponding
computation of optimal strategies, has appeared in several different areas. We
start each subsection by defining a particular instance of the game, fixing the the
set of outcomes R, the sets of moves Xi , the (multi-valued) quantifiers fi and the
outcome function q: Pn−1

i=0 Xi → R. After each instantiation a discussion will follow
showing how the derived optimal strategy, in case fi are attainable, corresponds
to a known concept in a particular field of research. In some cases we will assume
the reader is familiar with particular notions of each field, as it would be difficult
to give all background necessary for each particular application discussed.

(a) Algorithms: backtracking

Consider first the following simple instance of the finite game with single-valued
quantifiers (definition 3.1).

— Outcomes and moves. Let the set of outcomes and the set of moves at each
round be the Booleans B = {tt, ff}, i.e. R = Xi = B for all 0 ≤ i < n.

— Quantifiers. The quantifiers fi : (Xi → B) → B are given by the existential
quantifier

fi(pXi→B) B= ∃x ∈ Xip(x).

— Outcome function. For the outcome function take a Boolean formula on n
variables, i.e. q: Bn → B.

First, note that the optimal outcome

w =
(

n−1⊗
i=0

fi

)
(q) = ∃x1 ∈ X1, . . . ∃xn−1 ∈ Xn−1q(x0, . . . , xn−1)

calculates whether the formula q is satisfiable or not, whereas an optimal play
a returns a satisfying assignment which makes q true in case the formula is
satisfiable. Note also that

3i(pXi→B) Xi=
{
tt if p(tt) = tt
ff otherwise

are selection functions for fi : (Xi → B) → B, i.e. given any p: Xi → B we have

p(3i(p)) = fi(p).

By theorem 5.7 the product of selection functions computes an optimal play,
i.e. a satisfying assignment in case the formula is satisfiable. Observing how the
product of selection functions operates in this particular case, we note that the
computation of the satisfying assignment is done backtracking. Each individual
selection function 3i performs an exhaustive search on the space B in order to
find a witness for p: Xi → B, when put together, the product of selection function
is then able to perform an exhaustive search on the product space B

n .

Proc. R. Soc. A (2011)

 on April 26, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


1538 M. Escardó and P. Oliva

We note, however, that a search only happens when the formula q queries
a particular variable xi . Therefore, if the value of q is already decided given a
few particular values the backtracking terminates that search branch and tries a
different branch. In other words, in this particular case the products of selection
functions perform backtracking with ‘automatic’ pruning.

(b) Fixed point theory: Bekič’s lemma

Consider the following instance of the finite game with multi-valued quantifiers
(definition 4.1).

— Outcomes and moves. The sets of moves Xi are fixed sets each endowed
with a fixed point operator

fixi : (Xi → Xi) → Xi .

We are assuming now to be working in some particular model or ‘domain’
where such fixed point operators exist. The set of outcomes will be the
product space R ≡ Pn−1

i=0 Xi .
— Quantifiers. The multi-valued quantifiers fi : (Xi → R) → 2R are given as

fi(pXi→R) = {r ∈ R: ri = fixi(pi ◦ p)}
where pi : R → Xi is the standard ith projection mapping.

— Outcome function. The outcome function q: Pn−1
i=0 Xi → R(≡ Pn−1

i=0 Xi →
Pn−1

i=0 Xi) is a given fixed self-map on the product space.

First we note that 3i(pXi→R) = fixi(pi ◦ p) are selection functions for the multi-
valued quantifiers fi : (Xi → R) → 2R, i.e. given any p: Xi → R, we have

p(fixi(pi ◦ p)) ∈ fi(p).

By theorem 5.7 we can compute an optimal strategy in this game as

nextk(x0, . . . , xk−1) = p0

((
n−1⊗
i=k

3i

)
(qx0,...,xk−1)

)
.

This optimal strategy induces an strategic play a which, by corollary 5.8, satisfies

ak = 3k(pk)

and

q(a) ∈ fk(pk),

for the given family of functions

pk(xk) =
(

n−1⊗
i=k+1

3i

)
(qa0,...,ak−1,xk ).
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Unwinding the definitions of fi and 3i we, in fact, have

ak = fixk(pk ◦ pk)

and
(q(a))k = fixk(pk ◦ pk).

Hence, ak = (q(a))k , for all 0 ≤ k < n, which is equivalent to saying that q(a) =
a. That is, the tuple a is a fixed point for the mapping q: Pn−1

i=0 Xi → Pn−1
i=0 Xi .

What we have shown is that in this particular instance of the game, the optimal
strategy induces a strategic play which computes a fixed point for a mapping on
the product space given a family of fixed point operators for each of the individual
spaces Xi . Moreover, the whole construction shows that if each space Xi has a
fixed point operator, then the product space Pn−1

i=0 Xi must also have a fixed point
operator. That is the essential content of Bekič’s lemma (Bekič 1984), a celebrated
result in fixed point theory, and frequently used in domain theory.

(c) Game theory: Nash equilibrium

Consider now another instance of the finite game with multi-valued quantifiers
(definition 4.1) as follows:

— Outcomes and moves. Fix sets Xi as the sets of moves, which for simplicity
we assume are finite. For the set of outcomes take n-tuples of reals, i.e.
R ≡ R

n .
— Quantifiers. The multi-valued quantifiers fi : (Xi → R) → 2R are given as

fi(pXi→R) = {r ∈ R: ri = max
xi∈Xi

pi(p(xi))},
where pi : R → Xi is the standard ith projection mapping. That is, fi
returns all the elements in the co-domain of p which have maximal value
at coordinate i.

— Outcome function. The outcome function q: Pn−1
i=0 Xi → R

n is a given
mapping from plays to n-tuples of real numbers.

First, since all quantifiers are different, we can think of this as an n-player game.
Moreover, the outcome function can be thought of as calculating the payoff each
of the n players gets at the end of the game. The quantifiers say that all players are
trying to maximize their own payoffs, without paying attention to what impact
this might have on other players. Note also that

3i(pXi→Rn
) Xi= argmax(pi ◦ p)

are selection functions for the multi-valued quantifiers fi : (Xi → R
n) → 2Rn

, i.e.
given any p: Xi → R

n we have

p(argmax(pi ◦ p)) ∈ fi(p).

By theorem 5.7, we can compute an optimal strategy in this game as

nextk(x0, . . . , xk−1)
Xk= p0

((
n−1⊗
i=k

3i

)
(qx0,...,xk−1)

)
.
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A strategy being optimal means

q(a, ba
k , . . . , ba

n−1) ∈ fk(lxk · q(a, xk , b
a,xk
k+1 , . . . , ba,xk

n−1)),

which, unwinding the definition of fk gives

pk(q(a, ba
k , . . . , ba

n−1)) = max
xk∈Xk

pk(q(a, xk , b
a,xk
k+1 , . . . , ba,xk

n−1)).

This is saying that the move ba
k suggested by the strategy leads to an outcome

with maximal payoff for player k. It follows that the strategy nextk is in Nash
equilibrium, as no player has any incentive to unilaterally change their strategy
for round k. In this example, the construction of optimal strategies via products of
selection functions corresponds to backward induction, a technique used in Game
Theory (Nisan et al. 2007) to compute Nash equilibria in sequential games.

(d) Higher type computability: searchable sets

Consider now the following instance of the unbounded game (definition 6.1),
which generalizes the finite game of §7a.

— Outcomes and moves. Let R be the domain of Boolean values B and each
Xi be subsets Si of a fixed domain A.

— Quantifiers. Let the quantifiers fi : (Si → B) → B be the existential
quantifiers over the subsets Si ⊆ A.

— Outcome function. For the outcome function we will take an arbitrary
predicate on the product space of the Si ’s, i.e. q: Pn−1

i=0 Si → B.

First, we note that the assumption that fi are attainable correspond in this
case to the sets Si being searchable, as defined in Escardó (2008).

It turns out that any searchable set (of total elements) is topologically compact,
and, mimicking the Tychonoff theorem from topology, it was shown in Escardó
(2008) that searchable sets are closed under countable products. For that one
must essentially show that the game above defined has an optimal strategy, and
that the optimal play witnesses q whenever q is a non-empty predicate.

In fact, the construction used in Escardó (2008) is a particular case of the
iterated product of selection function (definition 6.3), and it was precisely this
observation that led us to look at this construction in more details.

(e) Proof theory: arithmetic

In the next examples we show how the finite product of selection functions gives
a computational interpretation to arithmetic, whereas the unbounded product
interprets full classical analysis. Consider the principle of bounded collection for
existential formulas, i.e.

∀b∃n ≤ t∀m ≤ bA(n, m) → ∃n ≤ t∀mA(n, m),

where A(n, m) is a S0
1-formula. It is well-known that such principle lies in

between S0
2-induction and S0

1-induction, see Parsons (1970) and Kohlenbach
(2008). For simplicity, let us consider the case when A(n, m) = ∃kA0(n, m, k)

Proc. R. Soc. A (2011)

 on April 26, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


Review. Sequential games and optimal strategies 1541

where A0(n, m, k) is quantifier free, i.e.

∀b∃n ≤ t∀m ≤ b∃kA0(n, m, k) → ∃n ≤ t∀m∃kA0(n, m, k).

The negative translation (assuming Markov principle) of this principle is
equivalent to

∀b∃n ≤ t∀m ≤ b∃kA0(n, m, k) → ¬¬∃n ≤ t∀m∃kA0(n, m, k).

Its dialectica interpretation, see Avigad & Feferman (1998), is

∃f , g∀b(fb ≤ t ∧ ∀m ≤ bA0(fb, m, gbm)) → ∀3∃n ≤ t∃pA0(n, 3np, p(3np)).

In other words, given f , g and 3 we must produce n, b and p, such that

∀b(fb ≤ t ∧ ∀m ≤ bA0(fb, m, gbm)) → (n ≤ t ∧ A0(n, 3np, p(3np))).

This boils down to producing n, b, p given f , g, 3n such that for some m ≤ b we have

n = fb,

m = 3np

and gbm = p(3np),

⎫⎪⎬
⎪⎭ (7.1)

assuming f is bounded by t. We show that this can be solved using the optimal
strategy of the following finite game. Let f , g and (3n)n≤t be given.

— Outcomes and moves. The sets of moves Xi and the set of outcomes R is
taken to be the natural numbers N.

— Quantifiers. The quantifiers fi : (N → N) → N are defined from the given
selection functions

fi(p) = 3̄ip = p(3i(p)),

so that fi is attainable by definition.
— Outcome function. The outcome function q: Nt+1 → N is taken to be

q(x) = g(max x)(xf (max x)).

Given that the quantifiers are attainable, we can compute the optimal strategy
of this game, and its respective strategic play

a =
(

t⊗
i=0

3i

)
(q).

By corollary 5.8 we have that there are functions pn : N → N such that

an = 3n(pn)

and
q(a) = fn(pn) = pn(3n(pn)),

for 0 ≤ n ≤ t. Take b = max a and n = fb (because f is bounded by t we have
n ≤ t) and p = pn and m = an . We show that this solves the set of equations (7.1).
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By definition n = fb and m = an = 3npn = 3np. By the definition of q we also have

pn(3n(pn)) = q(a) = g(max a)(af (max a)) = gbafb = gban = gbm.

This is essentially the solution given in Oliva (2006) for the dialectica
interpretation of the infinite pigeon-hole principle, but here it is given an intuitive
game-theoretic explanation.

(f ) Proof theory: analysis

The product of selection functions also appears in proof theory, in the form
of bar recursion (Spector 1962). More precisely, in order to extend Gödel’s
consistency proof (Gödel 1958) from arithmetic to analysis, Spector arrived at
the following system of equations: Given a family of (selection) functions 3i : JY X
and functions r : Xu → Y and u: Xu → N find p: X → Y and a: Xu, such that

i N= u(a),

a(i) X= 3i(p)

and
p(a(i)) Y= r(a).

We show now that this system of equations can be solved from the optimal
strategy of the following unbounded game with explicit control (definition 6.7):

— Outcomes and moves. Let R = Y × N and Xi = X .
— Quantifiers. The quantifiers fi : (X → R) → 2R are defined from the 3i ’s as

fi(pX→Y×N) Y×N= {p(3i(p0 ◦ p))}.
— Outcome function. The outcome function q: Pn−1

i=0 Xi → R is

q(a) = (r(a), u(a)),

where r : Xu → Y and u: Xu → N are as given in Spector’s equations.
— Clock function. Let l : R → N be the second projection, i.e. l(a, n) = n.

By corollary 6.11, we have that for the strategic play a: Xu there are pi : X →
Y × N, such that

a(i) X= 3i(p0 ◦ pi)

and
q(a) ∈ fi(pi),

for 0 ≤ i ≤ l(q(a)), where a is the 3-strategic play. Unwinding the definitions of
f, q and l , and taking p∗

i (x) = p0(pi(x)), we have

a(i) X= 3i(p∗
i )

and
r(a) Y= p∗

i (3i(p∗
i )),
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for 0 ≤ i ≤ u(a), which solves Spector’s equations taking i = u(a) and p = p∗
i .

In other words, the notion required to extend Gödel’s consistency proof from
arithmetic to analysis was the computation of optimal strategies for unbounded
games with explicit control.

We have shown that in fact Spector’s bar recursion is primitive recursive
equivalent to the product of selection functions from definition 6.9, and that
a different form of bar recursion (Berardi et al. 1998; Berger & Oliva 2005,
2006) is primitive recursive equivalent to the product of selection functions from
definition 6.3. The second form of bar recursion arose from a game computational
interpretation of classical logic (Coquand 1995), and it would be interesting to
investigate in further detail how our notion of games corresponds to the one used
to interpret classical logic. See also Aczel (2001) for more connections between
strong monads and classical logic.

(g) Functional programming

We have also shown in Escardó & Oliva (2010c) that the construction JR
over any cartesian closed category gives rise to a strong monad, with the monad
morphism

(·): JR → KR

into the well-known continuation monad KR (Griffin 1990). This monad morphism
assigns the quantifier 3̄ ∈ KRA defined by equation (5.1) to a given selection
function 3 ∈ JRA. Moreover, the case n = 2 of the product of selection functions
turns out to be simply the canonical map that makes any strong monad into a
monoidal monad.

Monads are widely used in programming language semantics as a way to
interpret side-effects (Moggi 1991) and in functional programming, particularly
in the language Haskell, more generally as a way of structuring programs. As
it turns out—see Escardó & Oliva (2010d)—the ability to iterate this binary
product into an infinite product is already built into the Haskell language, once
the selection monad is defined. All constructions described here can be easily
implemented in functional programming, as done in Escardó & Oliva (2010d). In
fact, experimental results show that the calculation of optimal strategies using
the iterated product of selection functions is computationally very efficient with
respect to both time and space.

8. Games in normal and extensive form

The games discussed in this paper are presented in what is known as normal
form in the literature (von Neumann & Morgenstern 1944). This means that one
is given an outcome function q that associates outcomes to plays (sequences of
moves). For games presented in extensive form one organizes the set of all possible
plays as a decision tree, as also discussed by von Neumann & Morgenstern (1944),
who show that the two presentations are mathematically equivalent. For each
node of the tree there is a set of edges labelled by the moves that can follow that
node, leading to subtrees. Each leaf of the tree is labelled by an outcome. Given
a sequence of moves, one follows the tree starting from the root until a leaf is
obtained, from which one reads off the outcome of the play. The presentation
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of games in extensive form allows one to see that the n-ary product of
selection functions (definition 5.6) corresponds to backward induction, as
discussed in §7c.

For games of fixed, finite length n, all leafs are at level n of the tree. For a
game of unbounded, finite length, leafs can occur at any level of the tree, but it is
required that all paths eventually lead to a leaf. Trees which enjoy this property
are called well founded. The well-foundedness condition for games in extensive
form is equivalent to our continuity condition (6.1) for games in normal form.

Note that in the finite case, the optimal play (⊗i<n3i)(q) of the game q can be
seen as defined by induction on n, but this does not make sense for the infinite
product of selection functions. In both the finite and infinite case, for q continuous,
the outcome (⊗i3i)(q) can be seen as defined by structural induction on the well-
founded tree that defines q in extensive form (see Escardó & Oliva 2010c for
details). Thus, curiously, in the finite case, the same construction of (⊗i<n3i)(q)
can be seen at the same time as a definition by induction on n and as a definition
by induction on the extensive form of q.

The above discussion shows that bar recursion, mentioned in §7f , amounts
to recursion on well-founded trees, where the trees are indirectly presented as
continuous functions q:

∏
n Xn → R.

The authors would like to thank the two anonymous referees for their detailed comments and
suggestions which greatly improved the presentation of the paper. The second author (P.O.) also
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