









































Downloaded from http://rspa.royalsocietypublishing.org/ on November 18, 2018

! 0
& . 1% &M % "$
% &% ! ( ( ! & !
* Y& % %! 2 .
%! ( o, ) )t
1 ( '% (& ( !
) ( 6 1 [?2@ CJ? J!C& ? >\
% & |
9  4*% && 5! Loro(n # ) *
* & %l ( ! : A *
%! b ) * ("1
&& & L% ) &% ! ( H
1& - *| % % ) *
( & 11 TR -
)y & ) 1% "
* &  3n 60 1'% "
) * T %l
% & % ) * () (%( % &
)« N N TR VS )
( * * &
- % 7% y*r g Son#
IFE F A % & ! %( ! &M@ C&?>\
. %
COZ?G!&!&)C&" 9

S %4 M 4 M;7;M31 . 1'4 70X 0S 1F



Downloaded from http://rspa.royalsocietypublishing.org/ on November 18, 2018

226 Miss M. Seegar and Prof. K. Pearson. Saint- Venant
At H the de Saint-Venant *“fixing ” gives — dv/dx — 0, and
accordingly, from equation (ii),
0- 1, 9gf 1 1 t££A+
U sv%P (p [P 3
which equation provides the value of «, and
0= x(p'aX)+y"-p'ar
from which equation by (xvi) ft" disappears, and
as soon as ftis known.
Lastly: dr)p = per
from which equation ft" again disappears, and we have the requisite relation
to find ft. Woriting it out at length, we find: f
m =_*,(*siia i+pxi
\ 7 1+p / 7 1+p
49 (_Dtsin_py 24—8?;(m2—3)p/2m—p2nt+ pm3 (I - p /2m)
i iop ta)
where, as before, m = 2//7. (Xxxiv)
As before, infinities arise when 7 takes the values 27t f-7r, and -f.
(@) 7 = 2w All the terms of the series vanish except = 1, and i = 3.
Limit "y sin7 24-87/(m2—3) p/2an—pF» + pmt* (1—p/anh)~

7  (m2—I)(m2—9) p/m+1( 1 —p27)
= i(3 +2T;){l+p2-(p/p7},

o V _iysin~7 24— 8ri(m2—3 p'2w—pan+ pw+3
Limit, . A
VT e mes
= —t (1" 2?2))p'2
Hence Isla = i(3+27)(i+~-pV "A)-|p'2 (XXXV)

(&) 7 = |-7r.  One infinity comes in with the term in sin 7/sin f-7, and a
second with the first term of the series. We have

,sinl7 24-8?/(m2-3) (p'"-

imitii a5 P o3

+ W - a?>E*?]
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Solution Jotthe Flexuveof @€

And accordingly

0/2 - sin4—7T!+# ap

ip' 1

fli2is:{2p'+p2+ W (ii+2™)p'2-(i+»))(p/p') 2}

_j_2,)™ lirp2fypr- (p/p f 10S*PJ-
BinW 2. .. I-,(3t2-1) + -p"™)
+4~ O (i2-1)(9*2-1) p'3i+1(1-p '1i)

(Xxxvi)

() 7= 4w/ 3. One infinity comes in with the term in sin ~7/sin f 7 ,and
a second with the second term of the series. Proceeding to the limit:

Limit ,Wsin™7 24-8*7 B p'2n p2n+pt+3(1-p 3N
M2 3 7 m2-1)(m 2—9) p wH1(1-/> 21)

Sn‘%sinj‘jr —-FT(11 + 277)+ (1 —2t) MNogejO f-}—(p/p )6loge P)J- ,

and accordingly,

0/2 = 2,?[iin N B2, fp'2+ [2p +p2— fa (11 +2,)p2

1+279]
- (1 +"Hp/p)?
+1(1_2,)t~fep'2 logep- I="(p/p')'>log«p}
Ifisin#7r(1  .p*q+pD -p~qg-")

16 2w N A p'g2(1+p 32
, 1c8in (2td 3)* v 4—T71(3i2—4) p'3—p3A4- P+3(1 —p/3)q
+ ° 2t si' (i2-4)(9i2-4) p/™ 1(1-/>3)
(Xxxvii)
From formulae (xxxiv)-(xxxvii) the following Table for has been

mconstructed. It indicates that the droop due to shear is greatest for the
complete tube with a longitudinal slit along the top, but is never very
significant, even for this case, amounting only to about 1*5 per cent., when
the length of the tube is only five times its external radius. For semi-
circular and flatter “gutter pipe ” sections the shearing droop is negligible.
This is, of course, on the assumption that a small element at the mid-point of
the thickness in the median plane has been fixed in the de Saint-Venant
manner. In the present illustration such a fixing can hardly differ prac-
tically from clamping the mid-thickness in a vice. The values of

are
plotted as (1) in the accompanying Diagram I | :—
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228 Miss M. Seegar and Prof. K. Pearson. De Saint-Venant

>e S/q. filq for fj —0 *25.
0
0 0-002498 + 0 -002498 v 0 -0031
12 0 002501 + 0 -000704 » 0 -0027
30 0 002546 +0 -000108 r, 0 -0026
45 0 -002616 + 0 -000355 ,, 0 -0027
60 0-002715 + 0-001089 » 0 -0030
90 0 -002988 + 0 -004879 n 0 -0042
120 0-003349 +0 -014288 q 0-0069
135 0-003619 +0 -021830 r, 0 -0090
180 0-004308 +0-061219¢ 0 -0196
225 0-005141 +0-129299¢ 0 -0375
240 0-005526 + 0 -157970 7? 0 -0450
270 0-006011 + 0-224066€ 0 -0620
315 0-006798 +0-338411 0 -0914
360 0 -007495 + 0 -456247 r? 0-1216

It will be seen that, up to the semicircular trough, there is hardly any
droop due to shear.

(8) We now turn to our last illustration, that of the “gutter pipe ” with
the lowest point of the external surface and the highest points of the
internal surface fixed as far as is feasible. The complete fixing of these
points is not within the reach of the mathematical solution. We shall
realise the solution by supposing the three points represented by pins
parallel to the generators of the tube or portion of a tube, each carrying
a nut. A rigid vertical plate has now cut in it a vertical and a horizontal
slot. The two pins of the internal boundary work in the horizontal, the pin
of the external surface in the vertical slot. In other words, the point on the
mid-line of the external surface must have vertical play, and the extreme
points on the internal surface need horizontal play. The mathematical,
conditions are accordingly

w=v=0, when r = a

u =w= 0when r 0 + 7.
These conditions lead to
O="If {i9[p0B ae* +“>
which determines a. Further:
0 = X(«0. *1i7) - gj-(p COSi Yik ~ £ P 2) p>Si,3Jy
—f3"alcos 7+

0= %(a, 0)-£"* + 7",

which last two equations suffice to determine y and , the first of the two®
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Solution for the Flexure of certain Cantilevers. 229

A'.B.C'fixed ,, n.
Mid-Element H fixed =1 .

ANCLE or SECTOR

- {Diagram |l.—Curtate sectors. Fixing of a central element in de Saint-Venant’s fashion (1)
and fixing of lowest and two highest points (I1).
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230 Miss M. Seegar and Prof. K. Pearson. De Saint-Venant

being the same for either + 17. Subtracting to get of 7", we find, after
considerable reductions, that

1 (4sin i 11+ p+ p2)2+ 2sm W -p 3 1-p 3cCO0S-|7
Ph 2"\3 7 1+p / 3 7 1—pcosl7 41—pcos 7

sin 7 1—p3cosf-7

*TV(1-2in£-7 1 —pos 7
sin-|-7 in0e
7 (I+p)(I-pcos|-7) 9P
2.7 A 24 —s7; (2—3) ~
7(1—pcosl?) 135 3) o (02— 1) (to2—9) J
pm) 24— 877 (to2— 3) (xxxviii)

12, AP0 o (to—1; (12—9)

where m = 2iir/<y.
The infinities occur as in previous cases when 7 = 27r,J  or fir. Since
1—pcos 17 is always positive and greater than zero, this provides no infinity.
(@)7 = 27 t.All the terms of the series vanish, owing to the factor sin
except the first and the third.

Limit: i _ —Sin17 (1 3 (I+pm 24-8¢ (w2 3)

_7(1 —pcosfy) (1 Ra(t2—1) (o
= (3 +27;)(1 + p4-p2),
S —sin J7 1-fpm 24—s7/ (to2— 3)
Limiti_*3
ImitL 7(1-p CcosS 17) (1-P3 1—pmto(to2— 1) (to2— 9)_
= -"N (1 -2 w)(1 -p- p2).
Hence | B+2¢)(l+p+pd—"(1—p+p?d . (X X X i X)
(b.) 7 = 8. The first or i —1 term becom

proceed to the limit of this term in conjunction with the term in 1/sin fry.
We have:

i *(1—2, >l £i71 =~CO0S]|7
Limit; > ( J f7’l—pcosf|ry

sin17___ (!_ 3)1+Pa 24—87; (w02—3) "
7(1—pcos|-7) — 9 .
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Solution for the Flexure of certain Cantilevers. 231
Hence :
AQ) _9alsin __(L+p+pI\2_ i1 - 1P3
_ _ p _5
4 SinATr 1—i8 v (5-27) .1+ p3
\I-hp i-|p
T 1—iip\ 1+p L—p°
4sin7r 1 I+p3  1—)(3i2—1)
a l-ipU -diJ1 p9l-f3i(t2-1)(9i2-1)
% n.ip) 1 (3/\-1? 1
(=2463 '"P;1+P3 "' *(*2-1)(9i2-1)J-
(x1)
(c) 7= 47r/3. The second or i = 2 term becomes infinite in (xxxviii),
but is balanced by the infinity of the fourth term. We find :
oo i /i _0,\Sinl7 |-p 3cos|7
Limite 22 Tir(1 1—pcos 7
sin 7 1—pm 24—77(m2—@

7 (1—Pcos 17) 1+PI 14 pa (m2—1) (m2—'95)}

1—p3 sin| w 15-677 a _27]),\_1__

1+ip 27 —P5 )
Hence: i
11+ 2R3
41 + 4p
sin 87r(1-p3
2w \l+ip
sin 4' 1+ 4-1(312—4)
—¥ 1+  hi 1 1 p3)l—b*i(is-4)(9i2-4)
1—p=* 4—T77(372—4)
i1«4268.(1 + />3)l + M<i(2-4)(9«2-4).
(x1i)
From formula (xxxviii) to (xli) the following Table for has been

computed. It indicates straight off that the fixing of points off the axis of
symmetry of the cross-section is far less effective than fixing points on the

axis of symmetry in reducing the droop due to shear. The values of are
plotted as Il in Diagram || :—
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232 Solutionfor the Flexure of certain Cantilevers.
7. 0g &l for 7= 0 %25,
0 | 1
0 0 ''001665 + 0 002082 7 0 -0022
12 0 -001666 + 0 -000933 7 0 -0019
30 0-003807 - 0-005679 7 0 -0024
45 0-010922-0 012605 0 -0078
60 0 024593-0 -017785 0 -0201
90 0-072108 - 0-018782 0-0674
120 0-145750-0-028483 0 -1386
135 0-186336 + 0-0098187} 0 -1888
180 0-368036 + 0 -091291~ 0 -3909
225 0 -606700 + 0 -247616 7} 0 -6686
240 0 -701470 + 0 -320060 7 0 -7815
270 0-915986 + 0-499232 1 -0408
315 1-308780 + 0-863110 1-5242
360 1 -805000 + 1-35500077 2 -1438
1

The droop due to shear is clearly of no importance until the sectorial
angle reaches 90°. Then it rapidly increases, until /3Jg becomes about
18 times as large as for the element-fixing when we deal with a split tube.

While in the case of the complete sector we have seen that there is no
substantial difference in the shearing droop between the cases of fixing a
centroidal element (de Saint-Venant’s method) and fixing two points on the
mid-section, we see that very considerable differences arise in the case of the
annular or trough section according as we fix an element on the mid-plane,
nr a point on the bottom and two at the top edges. The physical reasons
for this great difference in shearing droop are not immediately obvious.
Experimental testing of these two methods of fixing would be fairly easy,
and at the same time interesting results might be obtained by fixing on the
terminal a larger number of points than are compatible with de Saint-Venant’s
mathematical solution.

The ideal mathematical solution ought to admit any shearing stress over
the free end of the cantilever, no stress over the generators of the prism, and
any shifts (including the system u=
end. But, so far, such very general conditions have defied mathematical
treatment. Indeed, as far as we are aware, no solution of any importance
has yet been obtained for an elastic body when it is subject to given shifts
eover one portion and given stresses over the remainder of its surface.
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